Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T17:19:54.878Z Has data issue: false hasContentIssue false

Biogeographic and evolutionary patterns of continental margin benthic foraminifera

Published online by Cambridge University Press:  08 April 2016

Martin A. Buzas
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
Stephen J. Culver
Affiliation:
Department of Geological Sciences, Old Dominion University, Norfolk, Virginia 23508

Abstract

Several very large, taxonomically standardized data sets have been compiled and utilized to investigate biogeographic and evolutionary patterns of continental margin benthic foraminifera. Mean partial species durations for 87 frequently occurring and 180 rarely occurring species on the Atlantic continental margin of North America are the same, namely 21 m.y. The global fossil record of these species indicates no center or centers of origin and indicates very rapid dispersal. The Miocene had the greatest number of first occurrences with 46%, followed by the Pleistocene, Pliocene and Oligocene with approximately 13% each. The remaining 14% first occur in the Eocene, Paleocene, and Cretaceous. Species with a wide geographic distribution often exhibit longer species durations than those with narrow geographic ranges. The vast majority of endemic species (150 of 175) occur rarely and have no fossil record.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassiformis (Galloway and Wisster) lineage: a preliminary report. Paleobiology 9:390397.Google Scholar
Bjorklund, R., and Goll, R. M. 1979. Internal skeletal structures of Collosphaera (radiolaria). Journal of Paleontology 53:12931326.Google Scholar
Boltovskoy, E. 1984. Oligocene through Quaternary bathyal foraminifera of worldwide distribution. Pp. 8185. In Oertli, H. J. (ed.), Second International Symposium on Benthic Foraminifera. Pau et Bordeaux.Google Scholar
Buzas, M. A., and Culver, S. J. 1984. Species duration and evolution: benthic foraminifera on the Atlantic continental margin of North America. Science 225:829830.CrossRefGoogle ScholarPubMed
Buzas, M. A., and Culver, S. J. 1986. Geographic origin of benthic foraminiferal species. Science 232:775776.Google Scholar
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F. 1982. On the distribution of species occurrence. Paleobiology 8:143150.Google Scholar
Crane, J. A. 1986. Polar origins of marine invertebrate faunas. Palaios 1:616617.Google Scholar
Culver, S. J., and Buzas, M. A. 1980. Distribution of Recent benthic foraminifera off the North American Atlantic coast. Smithsonian Contributions to the Marine Sciences 6:1512.Google Scholar
Culver, S. J., and Buzas, M. A. 1981. Distribution of Recent foraminifera in the Gulf of Mexico. Smithsonian Contributions to the Marine Sciences 8:1898.Google Scholar
Culver, S. J., and Buzas, M. A. 1982. Distribution of Recent benthic foraminifera in the Caribbean region. Smithsonian Contributions to the Marine Sciences 14:1382.Google Scholar
Culver, S. J., and Buzas, M. A. 1985. Distribution of Recent benthic foraminifera off the North American Pacific coast from Oregon to Alaska. Smithsonian Contributions to the Marine Sciences 26:1234.Google Scholar
Culver, S. J., and Buzas, M. A. 1986. Distribution of Recent benthic foraminifera off the North American Pacific coast from California to Baja. Smithsonian Contributions to the Marine Sciences 28:1634.CrossRefGoogle Scholar
Culver, S. J., and Buzas, M. A. 1987. Distribution of Recent benthic foraminifera off the North Pacific coast of Mexico and Central America. Smithsonian Contributions to the Marine Sciences 30:1184.Google Scholar
Culver, S. J., Buzas, M. A., and Collins, L. S. 1987. On the value of taxonomic standardization in evolutionary studies. Paleobiology 13:169176.CrossRefGoogle Scholar
Ducasse, O., Rousselle, L., and Peypouquet, J. P. 1983. Processes of evolution in marginal-coastal and bathyal ostracods, Paleogene of Aquitaine, France. Pp. 605611. In Maddocks, R. F. (ed.), Application of Ostracoda. Proceedings 8th International Symposium Ostracods, University of Houston.Google Scholar
Durazzi, J. T., and Stehli, F. G. 1972. Average generic age, the planetary temperature gradient, and pole location. Systematic Zoology 21:384389.Google Scholar
Hickey, L. J., West, R. M., Dawson, M. R., and Choi, D. K. 1983. Arctic terrestrial biota: paleomagnetic evidence of age disparity with mid-northern latitudes during the Late Cretaceous and Early Tertiary. Science 221:11531154.CrossRefGoogle ScholarPubMed
Jablonski, D., and Valentine, J. M. 1981. Onshore-offshore gradients in Recent eastern Pacific shelf faunas and their paleobiogeographic significance. Pp. 442453. In Scudder, G. G. E., and Reveal, J. L. (eds.), Evolution Today. Proceedings of the Second International Congress of Systematics and Evolutionary Biology. Carnegie-Mellon University, Pittsburgh, PA.Google Scholar
Jablonski, D., Flessa, K. W., and Valentine, J. W. 1985. Biogeography and paleobiology. Paleobiology 11:7590.CrossRefGoogle Scholar
Jackson, J. B. C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolution significance. American Naturalist 108:541560.CrossRefGoogle Scholar
James, M. J. 1984. A new look at evolution in the Galapagos: evidence from the Late Cenozoic marine molluscan fauna. Biological Journal of the Linnean Society 21:7795.CrossRefGoogle Scholar
Kauffman, E. G., and Scott, R. W. 1976. Basic concepts of community ecology and paleoecology. Pp. 128. In Scott, R. W., and West, R. R. (eds.), Structure and Classification of Paleocommunities. Dowden, Hutchinson & Ross, Inc.; Stroudsburg, Pennsylvania.Google Scholar
Kellogg, D. I. 1983. Phenology of morphologic change in radiolarian lineages from deep-sea cores: implications for macroevolution. Paleobiology 9:355362.Google Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.CrossRefGoogle Scholar
Lazarus, D., Scherer, R. P., and Prothero, D. R. 1985. Evolution of the radiolarian species complex Pterocranium: a preliminary review. Journal of Paleontology 59:183220.Google Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage, DSDP Site 284, southwest Pacific. Paleobiology 7:230240.Google Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377389.CrossRefGoogle Scholar
McCoy, E. D., and Heck, K. L. Jr. 1983. Centers of origin revisited. Paleobiology 9:1719.Google Scholar
Ozawa, T. 1975. Evolution of Lepidolina multiseptata (Permian foraminifer) in East Asia. Memoirs, Faculty of Science, Kyushu University, D, Geology 23:117164.Google Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology 4:115.Google Scholar
Scott, G. H. 1982. Tempo and stratigraphic record of speciation in Globorotalia puncticulata. Journal of Foraminiferal Research 12:112.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia University Press; New York.CrossRefGoogle Scholar
Smith, R. K. 1970. Late glacial foraminifera from southeast Alaska and British Columbia in a worldwide high northern latitude shallow-water faunal province. Archives des Sciences, Geneve 23:675702.Google Scholar
Stanley, S. M. 1987. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.CrossRefGoogle Scholar
Zinsmeister, W. J., and Feldmann, R. M. 1984. Cenozoic high latitude heterochroneity of southern hemisphere marine faunas. Science 224:281283.Google Scholar