Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T11:09:04.827Z Has data issue: false hasContentIssue false

Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions

Published online by Cambridge University Press:  08 February 2016

Ben Waggoner*
Affiliation:
Department of Biology, University of Central Arkansas, Conway, Arkansas 72035–0001. E-mail: [email protected]

Abstract

Paleotectonic reconstructions for the late Proterozoic have differed over the timing of the Cordilleran rifting between Laurentia and the East Gondwana cratons. Parsimony Analysis of Endemism (PAE) and phenetic clustering of the “Ediacara biota” were carried out, for comparison with competing paleotectonic hypotheses. All analyses show a common pattern of similarities among biotas. The biotas of Charnwood Forest and Newfoundland consistently group together, while the south Australian biota is closest to those of Baltica, northern Laurentia, and Siberia. The biota of southwest North America, though still poorly known, strikingly resembles that of Namibia—not that of northwestern Canada. This pattern is not obviously due to facies-related or preservational bias and is very different from Cambrian biogeographic patterns. The overall pattern is most consistent with the hypothesis that the western margin of Laurentia was in close contact with East Gondwana, with rifting taking place either during or just before the Vendian. This arrangement has been previously proposed as a paleotectonic hypothesis; however, most recent paleomagnetic and structural studies support the alternate hypothesis that this rifting took place more than 100 million years before the Vendian. Resolving this contradiction will require much more data on both organismal distribution and cratonal position.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Albert, V. A., Chase, M. W., and Mishler, B. D. 1993. Characterstate weighting for cladistic analysis of protein-coding DNA sequences. Annals of the Missouri Botanical Garden 80:752766.CrossRefGoogle Scholar
Anderson, M. M., and Conway Morris, S. 1982. A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Conception and St. John's Groups (Late Precambrian), Avalon Peninsula, Newfoundland. Proceedings of the third North American paleontological convention 1:18.Google Scholar
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences USA 95:606611.CrossRefGoogle ScholarPubMed
Bekker, Ju. R. 1985. Metazoa iz venda Urala. Pp. 107112in Sokolov, and Iwanowski, 1985.Google Scholar
Bekker, Ju. R. 1992. Drevnejshaja ediakarskaja biota urala. Izvestija Akademij Nauk, Serija Geologicheskaja 1992(6):1624.Google Scholar
Bekker, Ju. R., and Kishka, N. V. 1989. Otkrytie ediakarskoj bioty na juzhnom urale. Pp. 109120in Bogdanova, T. N. and Khozatskij, L. I., eds. Teoreticheskie i prikladnye aspekty sovremennoj paleontologii. Trudy XXXIII Sessii Vsesojuznogo paleontologicheskogo Obshchestva. Nauka, Leningrad.Google Scholar
Bland, B. H. 1984. Arumberia Glaessner and Walter, a review of its potential for correlation in the region of the Precambrian-Cambrian boundary. Geological Magazine 121:625633.CrossRefGoogle Scholar
Bond, G. C., Christie-Blick, N., Kominz, M., and Devlin, W. J. 1985. An early Cambrian rift to post-rift transition in the Cordillera of western North America. Nature 315:742746.CrossRefGoogle Scholar
Bowring, S. A., Martin, M. W., Grotzinger, J. P., Myrow, P., and Landing, E. 1998. Geochronological constraints on the duration of the Neoproterozoic-Cambrian transition. Geological Society of America Abstracts with Programs 30(7):A-147.Google Scholar
Boynton, H. E. 1978. Fossils from the Pre-Cambrian of Charnwood Forest, Leicestershire. Mercian Geologist 6:291296.Google Scholar
Boynton, H. E., and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist 13:165182.Google Scholar
Bradley, A. S. 1998. A new Vendian body fossil from the Nama Group of Namibia: evolutionary and biostratigraphic implications. Geological Society of America Abstracts with Programs 30(7):A-147.Google Scholar
Brain, C. K. 1997. The importance of Nama Group sediments and fossils to the debate about animal origins. Palaeontologica Africana 34:113.Google Scholar
Brasier, M. D. 1979. The Cambrian radiation event. In House, M. R., ed. The origin of major invertebrate groups. Systematics Association Special Volume 12:103159. Academic Press, London.Google Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295304.CrossRefGoogle Scholar
Brock, G. A., and Cooper, B. J. 1993. Shelly fossils from the Early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South Australia. Journal of Paleontology 67:758787.CrossRefGoogle Scholar
Brookfield, M. E. 1993. Neoproterozoic Laurentia-Australia fit. Geology 21:683686.2.3.CO;2>CrossRefGoogle Scholar
Brooks, D. R. and McClennan, D. A. 1991. Phylogeny, ecology and behavior. University of Chicago Press, Chicago.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 34:184.CrossRefGoogle Scholar
Chen, Y. 1994. Sinian. Pp. 2734in Yin, H., ed. The palaeobiogeography of China. Clarendon, Oxford.Google Scholar
Cloud, P. E., Wright, J., and Glover, L. 1976. Traces of animal life from 620–million-year-old rocks in North Carolina. American Scientist 64:396406.Google Scholar
Conway Morris, S. 1977. Molecular clocks: defusing the Cambrian “explosion”? Current Biology 7:R71R74.CrossRefGoogle Scholar
Conway Morris, S., and Rushton, W. A. 1986. Precambrian to Tremadoc biotas in the Caledonides. In Harris, A. L. and Fetter, D. J., eds. The Caledonian-Appalachian Orogen. Geological Society of America Special Paper 38:93109.Google Scholar
Conway Morris, S., Mattes, B. W., and Chen, M. 1990. The early skeletal organism Cloudina: new occurrences from Oman and possibly China. American Journal of Science 290A:245260.Google Scholar
Dalrymple, R. W., and Narbonne, G. M. 1996. Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic, Windermere Supergroup), Mackenzie Mountains, N. W. T. Canadian Journal of Earth Sciences 33:848862.CrossRefGoogle Scholar
Dalziel, I. W. D. 1991. Pacific margin of Laurentia and East Antarctica/Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19:586601.2.3.CO;2>CrossRefGoogle Scholar
Dalziel, I. W. D. 1997. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin 109:1642.2.3.CO;2>CrossRefGoogle Scholar
Debrenne, F., and Kruse, P. D. 1989. Cambrian Antarctic archaeocyaths. In Crane, J. A., ed. Origins and evolution of the Antarctic biota. Geological Society of America Special Paper 47:1528.CrossRefGoogle Scholar
Evans, K. R., and Rowell, A. J. 1990. Small shelly fossils from Antarctica: an Early Cambrian faunal connection with Australia. Journal of Paleontology 64:692700.CrossRefGoogle Scholar
Farmer, J., Vidal, G., Moczydlowska, M., Strauss, H., Ahlberg, P., and Siedlecka, A. 1992. Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark. Geological Magazine 129:181195.CrossRefGoogle Scholar
Fedonkin, M. A. 1985a. Besskeletnaya fauna venda: promorfologicheskij analiz. Pp. 1069in Sokolov, and Iwanowski, 1985.Google Scholar
Fedonkin, M. A. 1985b. Systematic description of Vendian metazoa. Pp. 71120in Sokolov, and Iwanowski, 1985.Google Scholar
Fedonkin, M. A. 1987. Besskeletnaja fauna venda i eë mesto v evoljutsii metazoa. Trudy Paleontologicheskogo Instituta 226:1175.Google Scholar
Fedonkin, M. A. 1992. Vendian faunas and the early evolution of Metazoa. Pp. 87129in Lipps, J. H. and Signor, P., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Fedonkin, M. A. 1998. Metameric features in the Vendian metazoans. Italian Journal of Zoology 65:1117.CrossRefGoogle Scholar
Fedonkin, M. A., and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388:868871.CrossRefGoogle Scholar
Ford, T. D. 1980. The Ediacaran fossils of Charnwood Forest, Leicestershire. Proceedings of the Geological Association 91:8183.CrossRefGoogle Scholar
Gehling, J. G. 1987. Earliest known echinoderm—a new Ediacaran fossil from the Pound Subgroup of South Australia. Alcheringia 11:337345.CrossRefGoogle Scholar
Gehling, J. G. 1988. A cnidarian of actinian-grade from Ediacaran Pound Subgroup, South Australia. Alcheringa 12:299314.CrossRefGoogle Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Geological Society of India Memoirs 20:181224.Google Scholar
Gehling, J. G., and Rigby, J. K. 1996. Long-expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology 70:185195.CrossRefGoogle Scholar
Germs, G. J. B. 1973. A reinterpretation of Rangea schneiderhorni and the discovery of a related new fossil from the Nama Group, South West Africa. Lethaia 6:110.CrossRefGoogle Scholar
Gibson, G. G., Teeter, S. A., and Fedonkin, M. A. 1984. Ediacarian fossils from the Carolina slate belt, Stanly County, North Carolina. Geology 12:387390.2.0.CO;2>CrossRefGoogle Scholar
Glaessner, M. F. 1978. Re-examination of Archaeichnium, a fossil from the Nama Group. Annals of the South African Museum 74:335342.Google Scholar
Glaessner, M. F. 1984. The dawn of animal life: a biohistorical study. Cambridge University Press, Cambridge.Google Scholar
Glaessner, M. F., and Walter, M. R. 1975. New Precambrian fossils from the Arumbera Sandstone, Northern Territory, Australia. Alcheringa 1:5969.CrossRefGoogle Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290A:261294.Google Scholar
Grazhdankin, D. V., and Ivantsov, A. Yu., 1996. Reconstructions of biotopes of ancient Metazoa of the late Vendian White Sea biota. Paleontological Journal 30:674678.Google Scholar
Grotzinger, J. P., Bowring, S. R., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598604.CrossRefGoogle Scholar
Grotzinger, J. P., Watters, W., Knoll, A. H., and Smith, O. 1998. Diverse calcareous fossils from the Ediacaran-age (550–543 Ma) Nama Group, Namibia. Geological Society of America Abstracts with Programs 30(7):A-147.Google Scholar
Gureev, Yu. A. 1987. Morfologicheskij analiz i sistematika vendiat. Preprint 87–15, Institut Geologicheskikh Nauk, Akademija Nauk, Ukrainskoj SSR, Kiev.Google Scholar
Gürich, G. 1933. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika. Palaeontologische Zeitschrift 15(2/3):137154.CrossRefGoogle Scholar
Hagadorn, J. W., and Waggoner, B. M. 1998. Vendian-Cambrian faunas from the southwestern U.S. Geological Society of America Abstracts with Programs 30(7):A-233.Google Scholar
Hagadorn, J. W., and Waggoner, B. M.In press. Ediacaran fossils from the southwestern United States. Journal of Paleontology.Google Scholar
Hahn, G., and Pflug, H.-D. 1985. Polypenartige Organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia. Geologica et Palaeontologica 19:113.Google Scholar
Hahn, G., and Pflug, H.-D. 1988. Zweischalige Organismen aus dem Jung-Präkambrium (Vendium) von Namibia (SW-Afrika). Geologica et Palaeontologica 22:119.Google Scholar
Hillis, D. M., and Bull, J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42:182192.CrossRefGoogle Scholar
Hillis, D. M., and Huelsenbeck, J. P. 1992. Signal, noise, and reliability in molecular phylogenetic analysis. Journal of Heredity 83:189195.CrossRefGoogle Scholar
Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwana inside-out? Science 252:14091412.CrossRefGoogle Scholar
Hofmann, H. J., Mountjoy, E. W., and Teity, M. W. 1985. Ediacaran fossils from the Miette Group, Rocky Mountains, British Columbia, Canada. Geology 13:819821.2.0.CO;2>CrossRefGoogle Scholar
Horodyski, R. J. 1991. Late Proterozoic megafossils from southern Nevada. Geological Society of America Abstracts with Programs 26(5):A163.Google Scholar
Huelsenbeck, J. P. 1995. Performance of phylogenetic methods in simulation. Systematic Biology 44:1749.CrossRefGoogle Scholar
Humphries, C. J., and Parenti, L. R. 1986. Cladistic biogeography. Clarendon Press, Oxford.Google Scholar
Ivantsov, A. Ju., and Grazhdankin, D. V. 1997. Novyj predstavitel' petalonam iz verkhnego venda Arkhangel'skoj oblasti. Paleontologicheskij Zhurnal 1997:318.Google Scholar
Jell, P. A. 1974. Faunal provinces and possible planetary reconstruction of the Middle Cambrian. Journal of Geology 82:319350.CrossRefGoogle Scholar
Jenkins, R. J. F. 1984. Interpreting the oldest fossil cnidarians. Paleontographica Americana 54:95104.Google Scholar
Jenkins, R. J. F. 1985. The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology 11:336355.CrossRefGoogle Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacarian assemblages. Pp. 131176in Lipps, J. H. and Signor, P., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Jenkins, R. J. F., and Gehling, J. G. 1977. A review of the frondlike fossils of the Ediacara assemblage. Records of the South Australian Museum 17:347359.Google Scholar
Kirschvink, J. L. 1992. A paleogeographic model for Vendian and Cambrian time. Pp. 569582in Schopf, J. W. and Klein, C., eds. The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Kirschvink, J. L., Ripperdan, R. L., and Evans, D. A. 1997. Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander. Science 277:541545.CrossRefGoogle Scholar
Klassen, G. J., Mooi, R. D., and Locke, A. 1991. Consistency indices and random data. Systematic Zoology 40:446457.CrossRefGoogle Scholar
Kominz, M. 1995. Thermally subsiding basins and the insulating effect of sediment with application to the Cambro-Ordovician Great Basin sequence, western USA. Basin Research 7:221233.CrossRefGoogle Scholar
Langille, G. B. 1974. Problematic calcareous fossils from the Stirling Quartzite, Funeral Mountains, Inyo County, California. Geological Society of America Abstracts with Programs 6:204205.Google Scholar
Legendre, P., and Vaudor, A. 1991. R Package 3.0: Multidimensional analysis, spatial analysis. Distributed by the authors, Département de sciences biologiques, Université de Montréal. http://alize.ere.umontreal.ca/~casgrainR/index.htmlGoogle Scholar
Levy, M., and Christie-Blick, N. 1991. Tectonic subsidence of the early Paleozoic passive continental margin in eastern California and southern Nevada. Geological Society of America Bulletin 103:15901606.2.3.CO;2>CrossRefGoogle Scholar
Li, Z.-X., Zhang, L., and Powell, C. M. 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology 23:407410.2.3.CO;2>CrossRefGoogle Scholar
Lieberman, B. S. 1997. Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology 25:10391042.2.3.CO;2>CrossRefGoogle Scholar
Lieberman, B. S. 1999. Testing the Darwinian legacy of the Cambrian radiation using trilobite phylogeny and biogeography. Journal of Paleontology 73:176181.CrossRefGoogle Scholar
Lieberman, B. S., and Eldredge, N. 1996. Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology 22:6679.CrossRefGoogle Scholar
Madison, W. P. and Madison, D. R. 1997. MacClade, version 3.07. Sinauer Associates, Sunderland, Mass.Google Scholar
Manly, B. F. J. 1991. Randomization and Monte Carlo methods in biology. Chapman and Hall, London.CrossRefGoogle Scholar
McKerrow, W. S., Scotese, C. R., and Brasier, M. D. 1992. Early Cambrian continental reconstructions. Journal of the Geological Society, London 149:599606.CrossRefGoogle Scholar
McMenamin, M. A. S. 1982. A case for two late Proterozoic-earliest Cambrian faunal province loci. Geology 10:290292.2.0.CO;2>CrossRefGoogle Scholar
McMenamin, M. A. S. 1996. Ediacaran biota from Sonora, Mexico. Proceedings of the National Academy of Sciences of the USA 93:49904993.CrossRefGoogle ScholarPubMed
McMenamin, M. A. S. 1998. The garden of Ediacara: discovering the first complex life. Columbia University Press, New York.Google Scholar
McMenamin, M. A. S., and McMenamin, D. L. S. 1990. The emergence of animals: the Cambrian breakthrough. Columbia University Press, New York.CrossRefGoogle Scholar
McMenamin, M. A. S., Awramik, S. M., and Stewart, J. H. 1983. Precambrian-Cambrian transition problem in western North America, Part II. Early Cambrian skeletonized fauna and associated fossils from Sonora, Mexico. Geology 11:227230.2.0.CO;2>CrossRefGoogle Scholar
Meert, J. G., and van der Voo, R. 1994. The Neoproterozoic (1000–540 Ma) glacial intervals: no more snowball earth? Earth and Planetary Science Letters 123:113.CrossRefGoogle Scholar
Misra, S. B. 1969. Late Precambrian (?) fossils from southeastern Newfoundland. Geological Society of America Bulletin 80:21332140.CrossRefGoogle Scholar
Moores, E. M. 1991. Southwest U.S.-East Antarctica (SWEAT) connection: a hypothesis. Geology 19:425428.2.3.CO;2>CrossRefGoogle Scholar
Narbonne, G. M. 1994. New Ediacaran fossils from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology 68:411417.CrossRefGoogle Scholar
Narbonne, G. M. 1998. The Ediacara biota: a terminal Neoproterozoic experiment in the evolution of life. GSA Today 8(2):16.Google Scholar
Narbonne, G. M., and Aitken, J. D. 1990. Ediacarian fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology 33:945980.Google Scholar
Narbonne, G. M., and Aitken, J. D. 1995. Neoproterozoic of the Mackenzie Mountains, northwestern Canada. Precambrian Research 73:101121.CrossRefGoogle Scholar
Narbonne, G. M., and Dalrymple, R. W. 1992. Taphonomy and ecology of deep-water Ediacaran organisms from northwestern Canada. Fifth North American paleontology conference, abstracts. Paleontological Society Special Publication 6:249.Google Scholar
Narbonne, G. M., and Gehling, J. G. 1998. Is Aspidella the first described Ediacaran body fossil? Geological Society of America Abstracts with Programs 30(7):A-233.Google Scholar
Narbonne, G. M., and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30:647676.Google Scholar
Narbonne, G. M., Kaufman, A. J., and Knoll, A. H. 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Geological Society of America Bulletin 106:12811292.2.3.CO;2>CrossRefGoogle ScholarPubMed
Narbonne, G., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology 71:953967.CrossRefGoogle ScholarPubMed
Palmer, A. R., and Rowell, A. J. 1995. Early Cambrian trilobites from the Shackleton Limestone of the Central Transantarctic Mountains. Journal of Paleontology 69(Suppl. II):128.CrossRefGoogle Scholar
Park, J. K., Buchan, K. L., and Harlan, S. S. 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America. Earth and Planetary Science Letters 132:129139.CrossRefGoogle Scholar
Pflug, H.-D. 1972. Zur Fauna der Nama-Schichten in SüdwestAfrika; III, Erniettomorpha, Bau und Systematik. Palaeontographica, Abteilung A 39(4–6):134168.Google Scholar
Piper, J. D. A. 1987. Palaeomagnetism and the continental crust. Open University Press, Milton Keynes, England.Google Scholar
Powell, C. M., Li, Z. X., McElhinny, M. W., Meert, J. G., and Park, J. K. 1993. Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology 21:889892.2.3.CO;2>CrossRefGoogle Scholar
Prave, A. R. 1999. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology 27:339342.2.3.CO;2>CrossRefGoogle Scholar
Rogers, J. J. W. 1996. A history of continents in the past three billion years. Journal of Geology 104:91107.CrossRefGoogle Scholar
Rosen, B. R. 1988. From fossils to earth history: applied historical biogeography. Pp. 437481in Myers, A. A. and Giler, P. S., eds. Analytical biogeography: an integrated approach to the study of animal and plant distributions. Chapman and Hall, London.CrossRefGoogle Scholar
Runnegar, B. N. 1992. Proterozoic fossil of soft-bodied metazoans (Ediacara faunas). Pp. 9991007in Schopf, J. W. and Klein, C., eds. The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Runnegar, B. N. 1995. Vendobionta or Metazoa? Developments in understanding the Ediacara “fauna.” Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 195:303318.CrossRefGoogle Scholar
Samson, S., Palmer, A. R., Robison, R. A., and Secor, D. T. Jr. 1990. Biogeographical significance of Cambrian trilobites from the Carolian slate belt. Geological Society of America Bulletin 102:14591470.2.3.CO;2>CrossRefGoogle Scholar
Sanderson, M. J., and Donoghue, M. J. 1989. Patterns of variation in levels of homoplasy. Evolution 43:17811795.CrossRefGoogle ScholarPubMed
Schopf, J. W. 1994. Disparate rates, differing fates: Tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proceedings of the National Academy of Sciences USA 91:67356742.CrossRefGoogle Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London 149:607613.CrossRefGoogle Scholar
Seilacher, A. 1993. Early multicellular life: late Proterozoic fossils and the Cambrian explosion. Pp. 389400in Bengtson, S., ed. Early life on Earth. Nobel Symposium No. 84. Columbia University Press, New York.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy: the principles and practice of numerical classification, 2d ed.W. H. Freeman, San Francisco.Google Scholar
Sokal, R. R. and Rohlf, F. J. 1995. Biometry: the principles and practice of statistics in biological research, 3rd ed.W. H. Freeman, New York.Google Scholar
Sokolov, B. S., and Iwanowski, A. B. 1985. Vendskaya Sistema 1: Istoriko-geologicheskoe i paleontologicheskoe obosnovanie. Nauka, Moscow.Google Scholar
Storey, B. C. 1993. The changing face of late Precambrian and early Palaeozoic reconstructions. Journal of the Geological Society, London 150:665668.CrossRefGoogle Scholar
Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research 31:361375.Google Scholar
Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Smithsonian Institution, Washington, D.C.Google Scholar
Taylor, M. E. 1966. Precambrian mollusc-like fossils from Inyo County, California. Science 153:198201.CrossRefGoogle ScholarPubMed
Unrug, R. 1997. Rodinia to Gondwana: the geodynamic map of Gondwana supercontinent assembly. GSA Today 7:16.Google Scholar
Valentine, J. W. 1972. Plates and provinciality, a theoretical history of environmental discontinuities. Special Papers in Palaeontology 12:7992.Google Scholar
Veevers, J. J., Walter, M. R., and Scheibner, E. 1997. Neoproterozoic tectonics of Australia-Antarctica and Laurentia and the 560 Ma birth of the Pacific Ocean reflect the 400 m.y. Pangaean Supercycle. Journal of Geology 105:225242.CrossRefGoogle Scholar
Vodanjuk, S. A. 1989. Ostatki besskeletnykh metazoa iz khatyspytskoj svity Olenekskogo podnjatija. Pp. 6174in Khomentovskij, V. V. and Sovetov, Ju. K., eds. Pozdnij dokembrij i rannij paleozoj Sibiri. Akademija Nauk SSSR, Sibirskoe Otdelenie, Institut Geologii i Geofiziki, Novosibirsk.Google Scholar
Waggoner, B. M., and Hagadorn, J. W. 1997. Ediacaran fossils from western North America: Stratigraphic and paleogeographic implications. Geological Society of America Abstracts with Programs 29(6):A30.Google Scholar
Williams, G. E., Schmidt, P. W., and Embleton, B. J. J. 1995. Comment on “The Neoproterozoic (1000–540 Ma) glacial intervals: no more snowball earth?' by Joseph G. Meert and Rob van der Voo. Earth and Planetary Science Letters 131:120124.CrossRefGoogle Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274:568573.CrossRefGoogle Scholar
Young, G. M. 1992. Late Proterozoic stratigraphy and the Canada-Australia connection. Geology 20:215218.2.3.CO;2>CrossRefGoogle Scholar
Young, G. M. 1995. Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents? Geology 23:153156.2.3.CO;2>CrossRefGoogle Scholar