Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T19:02:47.411Z Has data issue: false hasContentIssue false

Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton

Published online by Cambridge University Press:  08 February 2016

Gonzalo Vidal
Affiliation:
Uppsala University, Institute of Earth Sciences, Micropalaeontology, Norbyvägen 22, S-752 36 Uppsala, Sweden. E-mail: [email protected]
Małgorzata Moczydłowska-Vidal
Affiliation:
Uppsala University, Institute of Earth Sciences, Micropalaeontology, Norbyvägen 22, S-752 36 Uppsala, Sweden. E-mail: [email protected]

Abstract

The degradation-resistant organic-walled cell envelopes of acritarchs are the most abundant microfossils in Proterozoic and Cambrian rocks. These microfossils reveal diversity fluctuations that illuminate the nature of the record of primary producers near the Proterozoic/Phanerozoic boundary. Neoproterozoic radiations, some 1000–542 m.y. ago, reached levels comparable to those observed in the Cambrian Period. The microbiotas from rock successions from 13 Cambrian biochrons display significant fluctuations in the total number of microfossil taxa belonging to discrete microfossil assemblages. The assemblages reveal that Cambrian protist assemblages evolved over relatively short time spans, apparently out of low-diversity remnant populations after gradual declines in diversity. The characteristic microbiotas of the terminal Neoproterozoic and the Early, Middle, and Late Cambrian blossomed over relatively narrow time ranges, subsequently collapsing to nearly the initial levels. By virtue of the decreasing time spans involved in the late Vendian, Early, Middle, and Late Cambrian respectively, the tempo of specific turnover appears to have varied considerably. Speciation levels gradually decreased during Early and Middle Cambrian times and during Early Cambrian times were accompanied by rising levels of extinction. This latter feature seems to have reversed during Middle Cambrian times, lasting well into Late Cambrian times. Acritarchs were at the base of the marine trophic chain together with bacteria and other protists that are largely unrepresented in the fossil record. For this reason, the rise of diverse Cambrian protistan plankton must have been essential for early marine metazoan differentiation. Indeed, patterns of total diversity, speciation, and extinction of Cambrian acritarchs clearly mirror those of contemporaneous marine invertebrate faunas at the generic level.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahlberg, P., and Bergström, J. 1993. The trilobite Calodiscus lobatus from the Lower Cambrian of Scania, Sweden. Geologiska Föreningens i Stockholm Förhandlingar 115:331334.CrossRefGoogle Scholar
Allison, C. W., and Awramik, S. M. 1989. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada. Precambrian Research 43:253294.CrossRefGoogle Scholar
Allison, C. W., and Hilgert, J. W. 1986. Scale microfossils from the Early Cambrian in northwest Canada. Journal of Paleontology 60:9731015.CrossRefGoogle Scholar
Awramik, S. M., McMenamin, D. S., Yin, C.-G., Zhao, Z.-Q., Ding, Q.-X., and Zhang, S.-S. 1985. Prokaryotic and eukaryotic microfossils from a Proterozoic/Phanerozoic transition in China. Nature 315:655658.CrossRefGoogle Scholar
Bengtson, S. 1994. Early life on Earth. Nobel Symposium 84. Columbia University Press, New York.Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon zone, eastern Newfoundland). In Landing, E. and Narbonne, G. M., eds. Trace fossils, small shelly fossils, and the Precambrian-Cambrian boundary. New York State Museum Bulletin 463:89.Google Scholar
Brasier, M. D. 1995. The basal Cambrian transition and Cambrian bio-events (From terminal Proterozoic extinctions to Cambrian biomeres. pp. 113118. in Walliser, O. H., ed. Global events and event stratigraphy in the Phanerozoic. Springer, Berlin.Google Scholar
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature 369:477479.CrossRefGoogle Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 34:184.CrossRefGoogle Scholar
Colbath, G. K., and Grenfell, H. R. 1995. Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”). Review of Palaeobotany and Palynology 86:287314.CrossRefGoogle Scholar
Compston, W., Sambridge, M. S., Reinfrank, R. F., Moczydłowska, M., Vidal, G., and Claesson, S. 1995. Numerical ages of volcanics and the earliest faunal zone within the late Precambrian of East Poland. Journal of the Geological Society of London 152:499510.CrossRefGoogle Scholar
Conway Morris, S. 1994. Early metazoan evolution: first steps to an integration of molecular and morphological data. pp. 450459in Bengtson 1994.Google Scholar
Dawes, P., and Vidal, G. 1985. Proterozoic age of the Thule Group: new evidence from microfossils. Grønlands Geologiske Unders⊘kelse Report 125:2228.CrossRefGoogle Scholar
Downie, C. 1982. Lower Cambrian acritarchs from Scotland, Norway, Greenland and Canada. Transactions of the Royal Society of Edinburgh, Earth Sciences 72:257285.CrossRefGoogle Scholar
Eklund, C. 1990. Lower Cambrian acritarch stratigraphy of the Bårstad 2 core, östergötland, Sweden. Geologiska Foreningens i Stockholm Förhandlingar 112:1944.CrossRefGoogle Scholar
Evitt, W. R. 1985. Sporopollenin dinoflagellate cysts. Their morphology and interpretation. American Association of Stratigraphic Palynologists Foundation, Houston, Tex.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598604.CrossRefGoogle Scholar
Hagenfeldt, S. 1989a. Lower Cambrian acritarchs from the Baltic Depression and south-central Sweden, taxonomy and biostratigraphy. Stockholm Contributions in Geology 41:1176.Google Scholar
Hagenfeldt, S. 1989b. Middle Cambrian acritarchs from the Baltic Depression and south-central Sweden, taxonomy and biostratigraphy. Stockholm Contributions in Geology 41:177250.Google Scholar
Han, T.-M., and Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science 257:232235.CrossRefGoogle ScholarPubMed
Harland, W. B., Armstrong, R. L., Cox, A. W., Craig, L. E., Smith, A. G., and Smith, D. G. 1989. A geologic time scale. Cambridge University Press, Cambridge.Google Scholar
Herman, T. N. 1990. Organic world billion year ago. Academy of Sciences USSR, Institute of Precambrian Geology and Geochronology, Leningrad.Google Scholar
Hofmann, H. J., and Jackson, G. D. 1994. Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. Journal of Paleontology, Memoir 37:68 (suppl. 4: 1–35).Google Scholar
Horodyski, R. J. 1980. Middle Proterozoic shale-facies microbiota from the Lower Belt Supergroup, Little Belt Mountains, Montana. Journal of Paleontology 54:649663.Google Scholar
Isachsen, C. E., Bowring, S. A., Landing, E., and Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology 22:496498.2.3.CO;2>CrossRefGoogle Scholar
Israelson, C., Halliday, A. N., and Buchardt, B. 1996. U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale. Earth and Planetary Science Letters 141:153159.CrossRefGoogle Scholar
Jankauskas, T. V. 1982. Microfossils of the Riphean of the South Urals. pp. 84120. In Keller, B. M., ed. Stratotype of the Riphean, paleontology and paleomagnetism. Academy of Sciences USSR, Institute of Precambrian Geology and Geochronology, Leningrad.Google Scholar
Jankauskas, T. V. 1989. Precambrian microfossils of the USSR. Academy of Sciences USSR, Institute of Precambrian Geology and Geochronology, Leningrad. [In Russian.]Google Scholar
Kaufman, A. J., Knoll, A. H., and Awramik, S. M. 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions, Upper Tindir Group, northwestern Canada, as a test case. Geology 20:181185.2.3.CO;2>CrossRefGoogle ScholarPubMed
Knoll, A. H. 1989. Evolution and extinction in the marine realm: some constraints imposed by phytoplankton. Philosophical Transactions of the Royal Society of London B 325:279290.Google ScholarPubMed
Knoll, A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science 256:622627.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1994a. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences USA 91:67436750.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1994b. Neoproterozoic evolution and environmental change. pp. 439449in Bengtson 1994.Google Scholar
Knoll, A. H. 1996. Daughter of time. Paleobiology 22:17.CrossRefGoogle ScholarPubMed
Knoll, A. H., and Calder, S. 1983. Microbiotas of the late Precambrian Ryss Formation, Nordaustlandet, Svalbard. Palaeontology 26:467496.Google Scholar
Knoll, A. H., and Swett, K. 1987. Micropaleontology across the Precambrian-Cambrian boundary in Spitsbergen. Journal of Paleontology 61:898926.CrossRefGoogle Scholar
Knoll, A. H., and Walter, M.R. 1992. Latest Proterozoic stratigraphy and earth history. Nature 356:673678.CrossRefGoogle ScholarPubMed
Knoll, A. H., Blick, N., and Awramik, S. M. 1981. Stratigraphic and ecologic implications of late Precambrian microfossils from Utah. American Journal of Science 281:247263.CrossRefGoogle Scholar
Kolosova, S. P. 1991. (Late Precambrian spiny microfossils from the eastern part of the Siberian Platform). Algologia 1, No. 2:5359. Kiev. [In Russian.]Google Scholar
Krogh, T. E., Strong, D. F., O'Brien, S. J., and Papezik, V. S. 1988. Precise U-Pb dates from the Avalon Terrane in Newfoundland. Canadian Journal of Earth Sciences 25:442453.CrossRefGoogle Scholar
Mansuy, C., and Vidal, G. 1983. Late Proterozoic Brioverian microfossils from France; taxonomic affinity and implications of plankton productivity. Nature 302:606607.CrossRefGoogle Scholar
Martin, F. 1993. Acritarchs: a review. Biological Review 68:475538.CrossRefGoogle Scholar
Martin, F., and Dean, W. T. 1981. Middle and Upper Cambrian and Lower Ordovician acritarchs from Random Island, eastern Newfoundland. Geological Survey of Canada Bulletin 343:143.Google Scholar
Martin, F., and Dean, W. T. 1983. Late Early Cambrian and early Middle Cambrian acritarchs from Manuels River, eastern Newfoundland. Current Research, Part B. Geological Survey of Canada Paper 83-lB:353363.Google Scholar
Martin, F., and Dean, W. T. 1984. Middle Cambrian acritarchs from the Chamberlains Brook and Manuels River Formations at Random Island, eastern Newfoundland. Current Research, Part A. Geological Survey of Canada Paper 84-lA:429440.Google Scholar
Martin, F., and Dean, W. T. 1988. Middle and Upper Cambrian acritarch and trilobite zonation at Manuels River and Random Island, eastern Newfoundland. Geological Survey of Canada Bulletin 381:191.Google Scholar
Mendelson, C. V., and Schopf, J. W. 1992. Proterozoic and early Cambrian acritarchs. pp. 1232in Schopf and Klein 1992.Google Scholar
Mens, K., Bergström, J., and Lendzion, K. 1990. The Cambrian System on the East European Platform. Correlation chart and explanatory notes. International Union of Geological Sciences Publication 25:173.Google Scholar
Moczydłowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland. Fossils and Strata 29:1127.CrossRefGoogle Scholar
Moczydłowska, M. In press. Cambrian acritarchs from Upper Silesia, Poland: biochronology and tectonic implications. Fossils and Strata.Google Scholar
Moczydłowska, M., and Vidal, G. 1986. Lower Cambrian acritarch zonation in southern Scandinavia and southeastern Poland. Geologiska Foreningens i Stockholm Förhandlingar 108:201223.CrossRefGoogle Scholar
Moczydłowska, M., Vidal, G., and Rudavskaya, V. A. 1995. Neoproterozoic (upper Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology 36:495521.Google Scholar
Samuelsson, J. In press. Biostratigraphy and palaeobiology of early Neoproterozoic strata of the Kola Peninsula, northwest Russia. Norsk Geologisk Tidsskrift.Google Scholar
Palacios, T. 1989. Microfosiles de pared organica del Proterozoico Superior (Región Central de la Península Ibérica). Memorias del Museo Paleontologico de la Universidad de Zaragoza 3:191.Google Scholar
Schopf, J. W. 1992a. Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends. pp. 195218in Schopf and Klein 1992.Google Scholar
Schopf, J. W. 1992b. Patterns of Proterozoic microfossil diversity: an initial, tentative, analysis. pp. 529552in Schopf and Klein 1992.Google Scholar
Schopf, J. W. 1994. Disparate rates, different fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proceedings of the National Academy of Sciences USA 91:67356742.CrossRefGoogle Scholar
Schopf, J. W., and Klein, C. 1992. The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, New York.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1992. Proterozoic-Early Cambrian diversification of metazoans and metaphytes. Pp.. 553561in Schopf and Klein 1992.Google Scholar
Tappan, H. 1980. The Paleobiology of plant protists. W. H. Freeman, San Francisco.Google Scholar
Timofeev, B. V. 1966. Microphytological investigations of ancient formations. Academy of Sciences USSR, Institute of Precambrian Geology and Geochronology, Leningrad. [In Russian.]Google Scholar
Timofeev, B. V. 1969. Proterozoic spheromorphs. Academy of Sciences USSR, Institute of Precambrian Geology and Geochronology, Leningrad. [In Russian.]Google Scholar
Tucker, R. D., and McKerrow, W. S. 1995. Early Palaeozoic chronology: a review in light of new U-Pb zircon ages from Newfoundland and Britain. Canadian Journal of Earth Sciences 32:368379.CrossRefGoogle Scholar
Valentine, J. W. 1994. The Cambrian explosion. pp. 401411in Bengtson 1994.Google Scholar
Van Waveren, I., and Marcus, N. C. 1993. Morphology of recent copepod egg envelopes from Turkey Point, Gulf of Mexico, and their implications for acritarch affinity. In Molyneux, S. G. and Dorning, K. J., eds. Contributions to acritarch research. Special Papers in Palaeontology 48:11124Google Scholar
Vanguestaine, M. 1978. Criteres palynostratigraphiques conduisant a la reconnaissance dun pli couche Revinien dans le sondage de Grand-Halleux. Annales de la Société Geologique de Belgique 100:249276.Google Scholar
Vanguestaine, M. 1992. Biostratigraphie par acritarches du Cambro-Ordovicien de Belgique et des regions limitophes: Synthese et perspectives d'avenir. Annales de la Société Geologique de Belgique 115:118.Google Scholar
Vanguestaine, M., and Van Looy, J. 1983. Acritarches du Cambrian Moyen de la Vallée de Tacheddirt (Halt-Atlas, Maroc) dans le cadre d'une nouvelle zonation du Cambrien. Annales de la Societe Geologique de Belgique 106:6985.Google Scholar
Vidal, G. 1976. Late Precambrian microfossils from the Visings Beds in southern Sweden. Fossils and Strata 9:157.CrossRefGoogle Scholar
Vidal, G. 1979. Acritarchs from the upper Proterozoic and Lower Cambrian of East Greenland. Grønlands Geologiske Unders⊘gelse Bulletin 134:155.CrossRefGoogle Scholar
Vidal, G. 1981. Micropalaeontology and biostratigraphy of the upper Proterozoic and Lower Cambrian sequences in East Finnmark, northern Norway. Norges Geologiske Undersøkelse Bulletin 362:153.Google Scholar
Vidal, G. 1984. The oldest plankton. Scientific American 250:4857.CrossRefGoogle Scholar
Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology 33:287298.Google Scholar
Vidal, G. 1994. Early ecosystems—limitations imposed by the fossil record. pp. 298311in Bengtson 1994.Google Scholar
Vidal, G., and Dawes, P. 1980. Acritarchs from the Proterozoic Thule Group, north-west Greenland. Grønlands Geologiske Unders⊘gelse Report 100:2429.CrossRefGoogle Scholar
Vidal, G., and Ford, T. D. 1985. Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications. Precambrian Research 28:349489.CrossRefGoogle Scholar
Vidal, G., and Knoll, A. H. 1982. Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature 297:5760.CrossRefGoogle Scholar
Vidal, G., and Knoll, A. H. 1983. Proterozoic plankton. Geological Society of America, Memoir 161:265277.CrossRefGoogle Scholar
Vidal, G., and Moczydłowska, M. 1992. Patterns of radiation in the phytoplankton across the Precambrian-Cambrian boundary. Journal of the Geological Society, London 149:647654.CrossRefGoogle Scholar
Vidal, G., and Moczydłowska, M. 1995. The Neoproterozoic of Baltica—stratigraphy, palaeobiology and general geological evolution. Precambrian Research 73:197216.CrossRefGoogle Scholar
Vidal, G., and Moczydłowska, M. 1996. Vendian-Lower Cambrian acritarch biostratigraphy of the central Caledonian fold belt in Scandinavia and the palaeogeography of the Iapetus-Tornquist seaway. Norsk Geologisk Tidsskrift 76:122.Google Scholar
Vidal, G., and Nystuen, J. P. 1990a. Micropalaeontology, depositional environment and biostratigraphy of the upper Proterozoic Hedmark Group, southern Norway. American Journal of Science 290-A:170211.Google Scholar
Vidal, G., and Nystuen, J. P. 1990b. Lower Cambrian acritarchs and Proterozoic-Cambrian boundary in southern Norway. Norsk Geologisk Tidsskrift 70:191222.Google Scholar
Vidal, G., and Peel, J. S. 1993. Acritarchs from the Lower Cambrian Buen Formation in North Greenland. Grønlands Geologiske Undersøkelse Bulletin 164:135.CrossRefGoogle Scholar
Vidal, G., and Siedlecka, A., 1983. Planktonic, acid-resistant microfossils from the upper Proterozoic strata of the Barents Sea region of Varanger Peninsula, East Finnmark, northern Norway. Norges Geologiske Undersøkelse Bulletin, 382:4579.Google Scholar
Vidal, G., Moczydłowska, M., and Rudavskaya, V. R. 1993. A Chuaria-Tawuia assemblage and associated acritarchs from the Neoproterozoic of the Lena-Anabar Depression, Yakutia—biostratigraphic implications. Palaeontology 36:387402.Google Scholar
Vidal, G., Moczydłowska, M., and Rudavskaya, V. R. 1995. Constraints on the early Cambrian radiation and correlation of the Tommotian and Nemakit-Daldynian regional stages of eastern Siberia. Journal of the Geological Society of London 152:499510.CrossRefGoogle Scholar
Volkova, N. A. 1968. Acritarchs from Precambrian and Cambrian deposits in Estonia.). pp. 836in Keller, B. M., ed. Problematics of Riphean and Cambrian of the Russian Platform, Urals and Kazakhstan. Academy of Sciences USSR, Moscow. [In Russian.]Google Scholar
Volkova, N. A. 1990. Middle and Upper Cambrian acritarchs from the East European Platform. Academy of Sciences USSR, Moscow. [In Russian.]Google Scholar
Volkova, N. A. 1993. Acritarchs of the Cambrian-Ordovician transitional deposits of the glint zone in Estonia (borehole M-56) Eesti Teaduste Akadeemia Toimetised, Geoloogoa 41:1522. [In Russian.]Google Scholar
Volkova, N. A., Kirjanov, V. V., Piskun, L. V., Paskeviciene, L. T., and Jankauskas, T. V. 1983. Plant microfossils. pp. 746In Urbanek, A. and Rozanov, A. Yu., eds. Upper Precambrian and Cambrian Palaeontology of the East-European Platform. Wydawnictwa Geologiczne, Warsaw.Google Scholar
Welsch, M. 1986. Die Acritarchen der hoheren Digermul-Gruppe, Mittelkambrium bis Tremadoc, Ost-Finnmark, Nord-Norwegen. Palaeontographica, Abt. B 201:1109.Google Scholar
Yin, C.-Y. 1990. Spinose acritarchs from the Doushantou Formation in the Yangtze Gorges and its geological significance. Acta Micropalaeontologica Sinica 7:265270.Google Scholar
Yin, L.-M. 1985a. Microfossils of the Doushantuo Formation in the Yangtze Gorge District, western Hubei. Palaeontologia Cathayana 2:229249.Google Scholar
Yin, L.-M. 1985b. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, and Western Australia. Proceedings of the Royal Society of Victoria 83:211234.Google Scholar
Yin, L.-M. 1991. Ecological history of the Doushantuo Period in Yangtze Gorge district, southern China. pp. 110In Jin, Y.-G., Wang, J.-G., and Xu, S.-H., eds. Paleoecology of China, Vol. 1. Nanjing University Press, Nanjing.Google Scholar
Young, T., Martin, F., Dean, W. T., and Rushton, A. W. A. 1994. Cambrian stratigraphy of St. Tudwal's Peninsula, Gwynedd, northwest Wales. Geological Magazine 131:335360.Google Scholar
Zang, W., and Walter, M. R. 1989. Latest Proterozoic plankton from the Amadeus Basin in central Australia. Nature 337:642645.CrossRefGoogle Scholar
Zang, W., and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Association of Australian Palaeontologists Memoir 12:1132.Google Scholar
Zhang, Z.-Y. 1986. Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China. Journal of Micropalaeontology 5:916.Google Scholar
Zhu, S., and Chen, H. 1995. Megascopic multicellular organisms from the 1700-millon-year-old Tuanshanzi Formation in the Jixian area, North China. Science 270:620622.Google Scholar
Zhuravlev, A. Yu., and Wood, R. A. 1996. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24:311314.2.3.CO;2>CrossRefGoogle Scholar