Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T09:58:57.217Z Has data issue: false hasContentIssue false

Biodiversity in the Phanerozoic: a reinterpretation

Published online by Cambridge University Press:  20 May 2016

Shanan E. Peters
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. [email protected], [email protected]
Michael Foote
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. [email protected], [email protected]

Abstract

Many features of global diversity compilations have proven robust to continued sampling and taxonomic revision. Inherent biases in the stratigraphic record may nevertheless substantially affect estimates of global taxonomic diversity. Here we focus on short-term (epoch-level) changes in apparent diversity. We use a simple estimate of the amount of marine sedimentary rock available for sampling: the number of formations in the stratigraphic Lexicon of the United States Geological Survey. We find this to be positively correlated with two independent estimates of rock availability: global outcrop area derived from the Paleogeographic Atlas Project (University of Chicago) database, and percent continental flooding. Epoch-to-epoch changes in the number of formations are positively correlated with changes in sampled Phanerozoic marine diversity at the genus level. We agree with previous workers in finding evidence of a diversity-area effect that is substantially weaker than the effect of the amount of preserved sedimentary rock. Once the mutual correlation among change in formation numbers, in diversity, and in area flooded is taken into consideration, there is relatively little residual correlation between change in diversity and in the extent of continental flooding. These results suggest that much of the observed short-term variation in marine diversity may be an artifact of variation in the amount of rock available for study. Preliminary results suggest the same possibility for terrestrial data.

Like the comparison between change in number of formations and change in sampled diversity, which addresses short-term variation in apparent diversity, the comparison between absolute values of these quantities, which relates to longer-term patterns, also shows a positive correlation. Moreover, there is no clear temporal trend in the residuals of the regression of sampled diversity on number of formations. This raises the possibility that taxonomic diversity may not have increased substantially since the early Paleozoic. Because of limitations in our data, however, this question must remain open.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrain, J. M.Westrop, S. R. 2000. An empirical assessment of taxic paleobiology. Science 289:110112.Google Scholar
Aguirre, J.Riding, R.Braga, J. C. 2000. Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26:651667.Google Scholar
Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.Google Scholar
Alroy, J. 1998. Equilibrial diversity dynamics in North American mammals. Pp. 233287in McKinney, M. L.Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Alroy, J. 2000. Successive approximation of diversity curves: ten more years in the library. Geology 28:10231026.Google Scholar
Alroy, J.Marshall, C. R.Bambach, R. K.Bezusko, K.Foote, M.Fürsich, F. T.Hansen, T. A.Holland, S. M.Ivany, L. C.Jablonski, D.Jacobs, D. K.Jones, D. C.Kosnik, M. A.Lidgard, S.Low, S.Miller, A. I.Novack-Gottshall, P. M.Olszewski, T. D.Patzkowsky, M. E.Raup, D. MRoy, K.Sepkoski, J. J. Jr.Sommers, M. G.Wagner, P. J.Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Allison, P. A.Briggs, D. E. G. 1993. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21:6568.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Benton, M. J. 1993. The fossil record 2. Chapman and Hall, London.Google Scholar
Benton, M. J.Wills, M. A.Hitchin, R. 2000. Quality of the fossil record through time. Nature 403:534537.Google Scholar
Best, M. M. R.Kidwell, S. M. 2000. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology 26:80102.Google Scholar
Bowring, S. A.Erwin, D. H. 1998. A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today 8(9):18.Google Scholar
Brezinski, D. K. 1999. The rise and fall of late Paleozoic trilobites of the United States. Journal of Paleontology 73:164175.Google Scholar
Cherns, L.Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.2.0.CO;2>CrossRefGoogle Scholar
Erwin, D. H.Wing, S. L., eds. 2000. Deep time: Paleobiology‘s perspective. Paleobiology 26 (Suppl. to No. 4).Google Scholar
Flessa, K. W.Sepkoski, J. J. Jr. 1978. On the relationship between Phanerozoic diversity and changes in habitable area. Paleobiology 4:359366.Google Scholar
Foote, M. 2000a. Origination and extinction components of taxonomic diversity: general problems. Pp. 74102in Erwin and Wing 2000.Google Scholar
Foote, M. 2000b. Inferring temporal patters of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630 (this issue).Google Scholar
Foote, M.Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.Google Scholar
Foote, M.Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.CrossRefGoogle ScholarPubMed
Gilinsky, N. L.Bambach, R. K. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 13:427455.CrossRefGoogle Scholar
Gould, S. J. 1975. Diversity through time. Natural History 84(8): 2432.Google Scholar
Gregor, C. B. 1985. The mass-age distribution of Phanerozoic sediments. In Snelling, N. J., ed. The chronology of the geologic record. Geological Society of America Memoir 10:284289.CrossRefGoogle Scholar
Hallam, A. 1977. Secular changes in marine inundation of USSR and North America through the Phanerozoic. Nature 269:769772.Google Scholar
Hallam, A. 1984. Pre-Quaternary sea-level changes. Annual Review of Earth and Planetary Science 12:205243.Google Scholar
Hallam, A. 1992. Phanerozoic sea-level changes. Columbia University Press, New York.Google Scholar
Hallam, A.Wignall, P. B. 1999. Mass extinctions and sea level changes. Earth Science Reviews 48:217250.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.Google Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence-stratigraphic perspective. Pp. 148168in Erwin and Wing 2000.Google Scholar
Holland, S. M.Patzkowsky, M. E. 1999. Models for simulating the fossil record. Geology 27:491494.Google Scholar
Hurlburt, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.Google Scholar
Jablonski, D. 1980. Apparent versus real biotic effects of transgressions and regressions. Paleobiology 6:397407.Google Scholar
Johnson, K. G. 1998. A phylogenetic test of accelerated turnover in Neogene Caribbean brain corals (Scleractinia: Faviidae). Palaeontology 41:12471267.Google Scholar
Kendall, M.Ord, J. K. 1990. Time series, 3d ed.Arnold, EdwardKent, Seven Oaks. Keroher, G. C.et al. 1967. Lexicon of geologic names of the United States for 1936–1960. United States Geological Survey Bulletin 1200.Google Scholar
Kidwell, S. M.Brenchley, P. J. 1994. Patterns in bioclastic accumulation through the Phanerozoic: changes in input or in destruction? Geology 22:11391143.Google Scholar
Kullmann, J. 2000. Ammonoid turnover at the Devonian-Carboniferous boundary. Revue de Paléobiologie 8:169180.Google Scholar
Miller, A. I. 1997. Comparative diversification dynamics among palaeocontinents during the Ordovician Radiation. Geobios 20:397406.Google Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.Google Scholar
Miller, A. I. 2000. Conversations about Phanerozoic global diversity. Pp. 5373in Erwin and Wing 2000.Google Scholar
Miller, A. I.Foote, M. 1996. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.Google Scholar
MacLeod, N.Keller, G. 1991. Hiatus distributions and mass extinctions at the Cretaceous/Tertiary boundary. Geology 19:497501.Google Scholar
O'Dogherty, L.Sandoval, J.Vera, J. A. 2000. Ammonite faunal turnover tracing sea-level changes during the Jurassic (Beltic Cordillera, southern Spain). Journal of the Geological Society, London 157:723736.CrossRefGoogle Scholar
Palmer, A. R.Geissman, J. 1999. 1999 Geologic time scale. Geological Society of America, Boulder, Colo.Google Scholar
Pegel, T. V. 2000. Evolution of trilobite biofacies in Cambrian basins of the Siberian platform. Journal of Paleontology 74:10001019.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.Google Scholar
Raup, D. M. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.Google Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology 4:115.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M.Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Raymond, A.Metz, C. 1995. Laurussian land-plant diversity during the Silurian and Devonian: mass extinction, sampling bias, or both? Paleobiology 21:7491.Google Scholar
Rosenzweig, M. L. 1995. Specie. diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Rosenzweig, M. L. 1998. Preston's ergodic conjecture: the accumulation of species in space and time. Pp. 311348in McKinney, M. L.Drake, J., eds. Biodiversit dynamics: turnover of populations, taxa and communities. Columbia University Press, New York.Google Scholar
Ronov, A. B. 1978. The Earth's sedimentary shell. International Geology Review 24:13131363.Google Scholar
Ronov, A. B. 1994. Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. American Journal of Science 294:777801.Google Scholar
Ronov, A. B.Khain, V. E.Balukhovsky, A. N.Seslavinsky, K. B. 1980. Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology 25:311325.Google Scholar
Ross, C. A.Ross, J. R. P. 1995. Foraminferal zonation of late Paleozoic depositional sequences. Marine Micropaleontology 26:469478.CrossRefGoogle Scholar
Ross, R. J. Jr., and 27 others. 1982. The Ordovician system in the United States. International Union of Geological Sciences Publication 12.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea floor spreading. Journal of Geology 82:129143.Google Scholar
Schubert, J. K.Kidder, D. L.Erwin, D. H. 1997. Silica-replaced fossils through the Phanerozoic. Geology 25:10311034.2.3.CO;2>CrossRefGoogle Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioural diversity in the deep sea. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 4:233245.Google Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4:223251.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1994. Limits to randomness in paleobiologic models: the case of Phanerozoic species diversity. Acta Palaeontologica Polonica 38:175198.Google Scholar
Sepkoski, J. J. Jr. 1996. Patterns of Phanerozoic extinctions: a perspective from global databases. Pp. 3552in Walliser, O. H., ed. Global events and event stratigraphy. Springer, Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1997. Biodiversity: past present, and future. Journal of Paleontology 71:533539.Google Scholar
Sepkoski, J. J. Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.Google Scholar
Sepkoski, J. J. Jr. 2000. Crustacean biodiversity through the marine fossil record. Contributions to Zoology 69:213222.Google Scholar
Sepkoski, J. J. Jr.Bambach, R. K.Raup, D. M.Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology 3:325329.Google Scholar
Signor, P. W. III. 1982. Species richness in the Phanerozoic: compensating for sampling bias. Geology 10:625628.Google Scholar
Signor, P. W. IIILipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geological Society of America Special Paper 190:291296.Google Scholar
Simberloff, D. S. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. Journal of Geology 82:267274.Google Scholar
Sloss, L. L. 1976. Areas and volumes of cratonic sediments, western North America and eastern Europe. Geology 4:272276.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.Google Scholar
Vail, P. R.Mitchum, R. M.Todd, R. G.Widmier, J. M.Thompson, S.Songree, J. B.Bubb, J. N.Hatleid, W. G. 1977. Seismic stratigraphy and global changes of sea level. American Association of Petroleum Geologists Memoir 26:49212.Google Scholar
Valentine, J. W. 1970. How many marine invertebrate fossil species? A new approximation. Journal of Paleontology 44:410415.Google Scholar
Valentine, J. W. 1973. Phanerozoic taxonomic diversity: a test of alternate models. Science 180:10781079.CrossRefGoogle ScholarPubMed
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.Google Scholar
Wignall, P. B.Benton, M. J. 1999. Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society, London 156:453456.Google Scholar
Wilkinson, B. H.Walker, J. C. G. 1989. Phanerozoic cycling of sedimentary carbonate. American Journal of Science 289:525548.Google Scholar
Wold, C. N.Hay, W. W. 1993. Reconstructing the age and lithology of eroded sediment. Geoinformatics 4:137144.Google Scholar
Ziegler, A. M.Gibbs, M. T.Hulver, M. L. 1998. A mini-atlas of oceanic water masses in the Permian period. Proceedings of the Royal Society of Victoria 110:323343.Google Scholar