Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T11:21:05.209Z Has data issue: false hasContentIssue false

Biased extinction and evolutionary trends

Published online by Cambridge University Press:  08 February 2016

Richard D. Norris*
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

Abstract

The directionality of long-term trends can be strongly biased by forces intrinsic to a clade. Trends in body size and skeletal shape may be dictated more by variations in survivorship that reflect differences in ecology than by long-term directional changes in the environment. Hence, mass extinctions can help drive evolutionary trends by selectively eliminating some morphologies and permitting the survivors to found the next radiation.

Examples include repeated trends toward larger maximum body size and the evolution of keeled species from those with globose tests in planktonic foraminifera. Both the trends in size and shape develop because small species with globose tests are significantly more resistant to extinction than species that are large or have peripheral keels. Hence, the survivors of both the Cretaceous-Tertiary and Eocene-Oligocene extinction episodes are small, unkeeled taxa. Large species and species with keels evolved convergently after both mass extinctions as the founders radiated anew.

Comparison of three radiations of planktonic foraminifera suggest that the convergent evolution of similar test shapes and sizes is not due to synchronous changes in oceanography that track evolutionary trends. Instead, the reestablishment of habitat heterogeneity is needed to permit the ensuing radiation to unfold rather than to closely guide its progress. Similar evolutionary trends will develop in each radiation as long as the founders have similar morphology and the evolution of variants present in the previous radiation is not precluded by the environment.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aubry, M.-P., Berggren, W. A., Kent, D. V., Flynn, J. J., Klitgord, K. D., Obradovitch, J. D., and Prothero, D. R. 1988. Paleogene geochronology: an integrated approach. Paleoceanography 3:707742.CrossRefGoogle Scholar
Banner, F. T. 1982. A classification and introduction to the Globigerinacea. Pp. 142239. In Banner, F. T., and Lord, A. R. (eds.), Aspects of Micropaleontology. Allen and Unwin; London.CrossRefGoogle Scholar
Banner, F. T., and Desai, D. 1988. A review and revision of the Jurassic-Early Cretaceous Globigerinina, with special reference to the Aptian assemblages of Speeton (North Yorkshire, England). Journal of Micropaleontology 7:143185.CrossRefGoogle Scholar
Banner, F. T., and Lowry, F.M.D. 1985. The stratigraphical record of planktonic foraminifera and its evolutionary implications. Special Papers in Palaeontology 33:117130.Google Scholar
Berggren, W. A. 1977. Atlas of Palaeogene planktonic foraminifera. Pp. 205299. In Ramsay, A.T.S. (ed.), Oceanic Micropaleontology, Volume 1. Academic Press; London.Google Scholar
Berggren, W. A., Kent, D. V., Flynn, J. J., and Van Couvering, J. A. 1985. Cenozoic geochronology. Geological Society of America Bulletin 96:14071418.2.0.CO;2>CrossRefGoogle Scholar
Blow, W. H. 1979. The Cainozoic Foraminiferida, Volumes I-III. E. J. Brill; Leiden.Google Scholar
Boersma, A., and Premoli Silva, I. 1983. Paleocene planktonic foraminiferal biogeography and the paleoceanography of the Atlantic Ocean. Micropaleontology 29:355381.CrossRefGoogle Scholar
Boersma, A., Premoli Silva, I., and Shackleton, N. J. 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography 2:287331.CrossRefGoogle Scholar
Bolli, H. M. 1986. Evolutionary trends in planktic foraminifera from early Cretaceous to Recent, with special emphasis on selected Tertiary lineages. Bulletin Centres Recherches Exploration-Production Elf-Aquitaine 10:565577.Google Scholar
Bolli, H. M., and Saunders, J. B. 1985. Oligocene to Holocene low latitude planktic foraminifera. Pp. 155262. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press; Cambridge.Google Scholar
Caron, M. 1985. Cretaceous foraminifera. Pp. 1786. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press; New York.Google Scholar
Caron, M., and Homewood, P. 1983. Evolution of early planktonic foraminifers. Marine Micropaleontology 7:453462.CrossRefGoogle Scholar
Chatterton, B.D.E., and Speyer, S. E. 1989. Larval ecology, life history strategies, and patterns of extinction and survivorship among Ordovician trilobites. Paleobiology 15:118132.CrossRefGoogle Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Systematic Zoology 18:154168.CrossRefGoogle Scholar
Cifelli, R., and Scott, G. 1986. Stratigraphic record of the Neogene globorotalid radiation (planktonic foraminiferida). Smithsonian Contributions to Paleobiology 58.CrossRefGoogle Scholar
Cooper, R. A., and Fortey, R. A. 1983. Development of the graptolite rhabdosome. Alcheringa 7:201221.CrossRefGoogle Scholar
Douglas, R. G., and Savin, S. M. 1978. Oxygen isotope evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera. Marine Micropaleontology 3:175196.CrossRefGoogle Scholar
Fortey, R. A., and Bell, A. 1987. Branching geometry and function of multiramous graptoloids. Paleobiology 13:119.CrossRefGoogle Scholar
Frerichs, W. E. 1971. Evolution of planktonic foraminifera and paleotemperatures. Journal of Paleontology 45:963968.Google Scholar
Gerstel, J., Thunell, R. C., Zachos, J. C., and Arthur, M. A. 1986. The Cretaceous/Tertiary boundary event in the North Atlantic: planktonic foraminiferal results from the Deep Sea Drilling Project Site 577, Shatsky rise. Paleoceanography 1:97117.CrossRefGoogle Scholar
Gorbachik, T. N. 1971. On early Cretaceous foraminifera of Crimea. Voprosi Micropaleontologii 14:125139.Google Scholar
Gorbachik, T. N. 1986. Jurassic and Early Cretaceous Planktonic Foraminifera of the South of the USSR. Nauka; Moscow.Google Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.CrossRefGoogle Scholar
Haas, O. 1942. Recurrence of morphologic types and evolutionary cycles in Mesozoic ammonites. Journal of Paleontology 16:643650.Google Scholar
Hallock, P. 1987. Fluctuations in the trophic resource continuum: a factor of global diversity cycles? Paleoceanography 2:457471.CrossRefGoogle Scholar
Hallock, P., Premoli Silva, I., and Boersma, A. 1991. Similarities between planktonic and larger foraminifera evolutionary trends through Paleogene paleoceanographic changes. Palaeogeography, Palaeoclimatology, Palaeoecology 83:4964.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561167.CrossRefGoogle ScholarPubMed
Hart, M. B. 1980. A water depth model for the evolution of the planktonic foraminiferida. Nature 286:252254.CrossRefGoogle Scholar
Hart, M. B., and Ball, K. C. 1986. Late Cretaceous anoxic events, sea-level changes and the evolution of planktonic foraminifera. Pp. 6778. In Summerhayes, C. P., and Shackleton, N. J. (eds.), North Atlantic Paleoceanography. Geological Society Special Publication 21.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern Planktonic Foraminifera. Springer-Verlag; New York.CrossRefGoogle Scholar
Jablonski, D. 1986. Larval ecology and macroevolution in marine invertebrates. Bulletin of Marine Science 39:565587.Google Scholar
Jablonski, D. 1989. The biology of mass extinction: a palaeontological view. Philosophical Transactions of the Royal Society of London, B 325:357368.Google ScholarPubMed
Jablonski, D., and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biological Reviews 58:2189.CrossRefGoogle Scholar
Jenkins, D. G. 1986. The Eocene/Oligocene boundary in deep sea deposits. Pp. 203207. In Pomerol, C., and Premoli Silva, I. (eds.), Terminal Eocene Events. Elsevier; Amsterdam.CrossRefGoogle Scholar
Johansen, M. B. 1989. Adaptive radiation, survival and extinction of brachiopods in the northwest European upper Cretaceous-lower Paleocene chalk. Palaeogeography, Palaeoclimatology, Palaeoecology 74:147204.CrossRefGoogle Scholar
Keller, G. 1989. Extended period of extinctions across the Cretaceous/Tertiary boundary in planktonic foraminifera of continental-shelf sections: implications for impact and volcanism theories. Geological Society of America Bulletin 101:14081419.2.3.CO;2>CrossRefGoogle Scholar
Kennedy, W. J., and Wright, C. W. 1985. Evolutionary patterns in Late Cretaceous ammonites. Special Papers in Palaeontology 33:131143.Google Scholar
Kennett, J. P., and Shackleton, N. J. 1976. Oxygen isotopic evidence for the development of the psychrosphere 38 myr ago. Nature 260:513515.CrossRefGoogle Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene Planktonic Foraminifera, a Phylogenetic Atlas. Hutchinson and Ross; Stroudsburg, Pennsylvania.Google Scholar
Kennett, J. P., and Stott, L. D. 1990. Proteus and Proto-oceanus: ancestral Paleogene oceans as revealed from Antarctic stable isotopic results; ODP leg 113. Proceedings of the Ocean Drilling Program, Scientific Results 113:865880.Google Scholar
Kent, D. V., and Gradstein, F. M. 1985. A Cretaceous and Jurassic geochronology. Geological Society of America Bulletin 96:14191427.2.0.CO;2>CrossRefGoogle Scholar
Kitchell, J. A., Clark, D. L., and Gombros, A. M. Jr. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios 1:504511.CrossRefGoogle Scholar
Knoll, A. H. 1989. Evolution and extinction in the marine realm: some constraints imposed by phytoplankton. Philosophical Transactions of the Royal Society of London, B 325:279290.Google ScholarPubMed
Landman, N. H. 1989. Iterative progenesis in Upper Cretaceous ammonites. Paleobiology 15:95117.CrossRefGoogle Scholar
Lazarus, D. 1983. Speciation in pelagic protista and its study in the planktonic microfossil record: a review. Paleobiology 9:327340.CrossRefGoogle Scholar
Leckie, R. M. 1987. Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of open ocean and epicontinental sea assemblages. Micropaleontology 33:164177.CrossRefGoogle Scholar
Leckie, R. M. 1989. A paleoceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 73:107138.CrossRefGoogle Scholar
Levinton, J. S., and Ginzberg, L. 1984. Repeatability of taxon longevity in successive foraminifera radiations and a theory of random appearance and extinction. Proceedings of the National Academy of Sciences, U.S.A. 81:54785481.CrossRefGoogle Scholar
Lipps, J. H. 1970. Plankton evolution. Evolution 24:122.CrossRefGoogle ScholarPubMed
Lipps, J. H. 1986. Extinction dynamics in pelagic ecosystems. Pp. 87104. In Elliott, D. K. (ed.), Dynamics of Extinction. John Wiley and Sons; New York.Google Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology 8:130142.CrossRefGoogle Scholar
Mitchell, C. F. 1987. Evolution and phylogenetic classification of the Diplograptacea. Palaeontology 30:353405.Google Scholar
Norris, R. D. 1986. Convergence in species longevity and structure of planktonic foraminifera radiations. Geological Society of America Abstracts with Programs, Annual Meeting, p. 790.Google Scholar
Norris, R. D. 1990. Iterative evolution in planktonic foraminifera. Unpublished doctoral dissertation. Harvard University; Cambridge, Massachusetts.Google Scholar
Norris, R. D. 1991. Parallel evolution of keel structure in planktic foraminifera. Journal of Foraminiferal Research 21:319331.CrossRefGoogle Scholar
Premoli Silva, I., and Boersma, A. 1988. Atlantic Eocene planktonic foraminiferal historical biogeography and paleohydrographic indices. Palaeogeography, Palaeoclimatology, Palaeoecology 67:315356.CrossRefGoogle Scholar
Premoli Silva, I., and Boersma, A. 1989. Atlantic Paleogene planktonic foraminiferal bioprovincial indices. Marine Micropaleontology 14:357371.CrossRefGoogle Scholar
Riedel, W. R., and Sanfilippo, A. 1981. Evolution and diversity of form in radiolaria. Pp. 323348. In Simpson, T. L., and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag; New York.CrossRefGoogle Scholar
Riegraf, W. 1987a. Planktonische Foraminiferen und Radiolarien im Callovium und Oxfordium (Jura) Süddeutschlands. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 176:91103.Google Scholar
Riegraf, W. 1987b. Planktonic formaminifera (Globuligerinidae) from the Callovian (Middle Jurassic) of southwest Germany. Journal of Foraminiferal Research 17:190211.CrossRefGoogle Scholar
Robaszynski, F., and Caron, M. (coordinators). 1979. Atlas of Mid-Cretaceous Planktonic Foraminifera (Boreal Sea and Tethys), Volumes 1, 2. Cahiers de Micropaléontologie, Centre National de la Recherche Scientifique, Paris.Google Scholar
Robaszynski, F., Caron, M., Gonzalez Donoso, J. M., and Wonders, A.A.H. 1984. Atlas of Late Cretaceous globotruncanids. Revue de Micropaléontologie 26:145305.Google Scholar
Savin, S. M. 1977. The history of the earth's surface temperature during the last 100 million years. Annual Reviews of Earth and Planetary Science 5:319355.CrossRefGoogle Scholar
Schopf, T.J.M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic versus morphological rates of evolution: influence of morphological complexity. Paleobiology 1:6370.CrossRefGoogle Scholar
Shackleton, N. J., and Kennett, J. P. 1975. Paleotemperature history of the Cenozoic and the initiation of of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281. Initial Reports of the Deep Sea Drilling Project, National Science Foundation; Washington, D.C. 29:743755.Google Scholar
Simpson, G. G. 1980. Splendid Isolation. The Curious History of South American Mammals. Yale University Press; New Haven, Connecticut.Google Scholar
Stam, B. 1986. Quantitative analysis of middle and late Jurassic foraminifera from Portugal and its implications for the Grand Banks of Newfoundland. Utrecht Micropaleontological Bulletins 34.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Stanley, S. M., Wetmore, K. L., and Kennett, J. P. 1988. Macroevolutionary differences between two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.CrossRefGoogle Scholar
Stehli, F. G., Douglas, R. G., and Kafesciolu, I. A. 1972. Models for the evolution of planktonic foraminifera. Pp. 116129. In Schopf, T.J.M. (ed.), Models in Paleobiology. Freeman Press; San Francisco.Google Scholar
Toumarkine, M., and Luterbacher, H. 1985. Paleocene and Eocene planktonic foraminifera. Pp. 87154. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press; New York.Google Scholar
Vincent, E., and Berger, W. H. 1981. Planktonic foraminifera and their use in paleoceanography. Pp. 10251119. In Emiliani, C. (ed.), The Oceanic Lithosphere: The Sea, Volume 7. Wiley; New York.Google Scholar
Ward, P. D., and Signor, P. W. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology 9:83198.CrossRefGoogle Scholar
Wei, K.-Y., and Kennett, J. P. 1983. Non-constant extinction rates of Neogene planktonic foraminifera. Nature 305:218220.CrossRefGoogle Scholar
Wei, K.-Y., and Kennett, J. P. 1986. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1:6784.CrossRefGoogle Scholar