Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T20:45:35.592Z Has data issue: false hasContentIssue false

Benthic community history in the Changjiang (Yangtze River) mega-delta: Damming, urbanization, and environmental control

Published online by Cambridge University Press:  22 July 2019

Richard Ching Wa Cheung
Affiliation:
School of Biological Sciences and Swire Institute of Marine Science, University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, China. E-mail: [email protected], [email protected], [email protected]
Moriaki Yasuhara
Affiliation:
School of Biological Sciences and Swire Institute of Marine Science, University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, China. E-mail: [email protected], [email protected], [email protected]
Hokuto Iwatani
Affiliation:
School of Biological Sciences and Swire Institute of Marine Science, University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, China. E-mail: [email protected], [email protected], [email protected]
Chih-Lin Wei
Affiliation:
Institute of Oceanography, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan.
Yun-wei Dong
Affiliation:
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.

Abstract

The coastal environment of the Changjiang delta has been influenced by recent anthropogenic activities such as dam construction and increased sewage and fertilizer inputs. Previous work examined the compositional shift of marine plankton to assess ecological impacts of these activities on marine ecosystems in the Changjiang discharge area. Here we used benthic marine ostracodes collected in the Changjiang estuary and the adjacent East China Sea in the 1980s and the 2010s, respectively, to investigate temporal changes of the benthic community and controlling factors for the benthic fauna. Our results revealed more shoreward distribution of some well-known offshore ostracode species in the 2010s compared with the 1980s and a relatively more important role for environmental processes (e.g., bottom-water temperature, bottom-water salinity, and eutrophic conditions of surface water) than spatial processes (e.g., the flow of ocean currents) in structuring ostracode compositions. The temporal changes in the ostracode community are likely attributable to the combined effects of reduced fresh water and sediment discharge and eutrophic conditions of the Changjiang due to the many dams constructed along the Changjiang and population expansion in the Changjiang Basin. Results of redundancy analysis and variation partitioning suggest that ocean currents facilitated environmental filtering of ostracode species such that they could disperse to preferred environmental conditions. These findings highlight the potential uses of marine microfossils to better understand ecological impacts on benthic ecosystems in vulnerable Asian mega-deltas and provide insights into the integration of metacommunity concepts in disentangling dynamics of marine benthic communities.

Type
Articles
Copyright
Copyright © The Paleontological Society. All rights reserved 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.39121ns

References

Literature Cited

Abe, K. 1988. Speciation completed? In Keijella bisanensis species group. Developments in Palaeontology and Stratigraphy 11:919–925.Google Scholar
Athersuch, J., Horne, D. J., and Whittaker, J. E.. 1989. Marine and brackish water ostracods. P. 343 in Kermaack, D. M. and Barnes, R. S. K., eds. Synopses of the British fauna (New series). Brill, Leiden.Google Scholar
Baquero, O. S. 2017. ggsn: north symbols and scale bars for maps created with ‘ggplot2’ or ‘ggmap’, R package version 0.4.0. https://github.com/oswaldosantos/ggsn, accessed 26 February 2019.Google Scholar
Bianchi, T. S., and Allison, M. A.. 2009. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings of the National Academy of Sciences USA 106:80858092.Google Scholar
Blanchet, F. G., Legendre, P., and Borcard, D.. 2008. Forward selection of explanatory variables. Ecology 89:26232632.Google Scholar
Bodergat, A.-M., and Ikeya, N.. 1988. Distribution of recent Ostracoda in Ise and Mikawa Bays, Pacific coast of central Japan. Developments in Palaeontology and Stratigraphy 11:413428.Google Scholar
Boomer, I., and Eisenhauer, G.. 2002. Ostracod faunas as palaeoenvironmental indicators in marginal marine environments. Pp. 135149 in Holmes, J. A. and Chivas, A. R., eds. The Ostracoda: applications in Quaternary research. American Geophysical Union, Washington, DC.Google Scholar
Borcard, D., Legendre, P., and Drapeau, P.. 1992. Partialling out the spatial component of ecological variation. Ecology 73:10451055.Google Scholar
Brouwers, E. M., Cronin, T. M., Horne, D. J., and Lord, A. R.. 2000. Recent shallow marine ostracods from high latitudes: implications for late Pliocene and Quaternary palaeoclimatology. Boreas 29:127142.Google Scholar
Buschke, F. T., De Meester, L., Brendonck, L., and Vanschoenwinkel, B.. 2015. Partitioning the variation in African vertebrate distributions into environmental and spatial components—exploring the link between ecology and biogeography. Ecography 38:450461.Google Scholar
Castillo-Escrivà, A., Valls, L., Rochera, C., Camacho, A., and Mesquita-Joanes, F.. 2016. Spatial and environmental analysis of an ostracod metacommunity from endorheic lakes. Aquatic Sciences 78:707716.Google Scholar
Chai, C., Yu, Z., Shen, Z., Song, X., Cao, X., and Yao, Y.. 2009. Nutrient characteristics in the Yangtze River estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Science of the Total Environment 407:46874695.Google Scholar
Chen, C., Zhu, J., Beardsley, R. C., and Franks, P. J. S.. 2003. Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters 30(10). doi: 10.1029/2002GL016391.Google Scholar
Chen, C.-C., Shiah, F.-K., Chiang, K.-P., Gong, G.-C., and Kemp, W. M.. 2009. Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea. Journal of Geophysical Research: Oceans 114(C3). doi: 10.1029/2008JC004891.Google Scholar
Chunlian, L., Fürsich, F. T., Jie, W., Yixin, D., Tingting, Y., Jian, Y., Yuan, W., and Min, L.. 2013. Late Quaternary palaeoenvironmental changes documented by microfaunas and shell stable isotopes in the southern Pearl River delta plain, South China. Journal of Palaeogeography 2:344361.Google Scholar
De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W., and Declerck, S. A. J.. 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15:740747.Google Scholar
De Master, D. J., McKee, B. A., Nittrouer, C. A., Qian, J. and Cheng, G.. 1985. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research 4:143158.Google Scholar
Dray, S., Legendre, P., and Peres-Neto, P. R.. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196:483493.Google Scholar
Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., and De Cáceres, M.. 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs 82:257275.Google Scholar
Dray, S., Legendre, P., and Blanchet, G.. 2013. packfor: forward selection with permutation (Canoco p.46), R package version 0.0-8/r109. http://r-forge.r-project.org/projects/sedar, accessed 1 February 2019.Google Scholar
Dray, S., Blanchet, G., Borcard, D., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., and Wagner, H. H.. 2017. adespatial: multivariate multiscale spatial analysis, R package version 0.0-8. https://cran.r-project.org/web/packages/adespatial/index.html, accessed 1 February 2019.Google Scholar
Duan, X., Liu, S., Huang, M., Qiu, S., Li, Z., Wang, K., and Chen, D.. 2009. Changes in abundance of larvae of the four domestic Chinese carps in the middle reach of the Yangtze River, China, before and after closing of the Three Gorges Dam. Environmental Biology of Fishes 86:13.Google Scholar
Escrivà, A., Poquet, J. M., and Mesquita-Joanes, F.. 2015. Effects of environmental and spatial variables on lotic ostracod metacommunity structure in the Iberian Peninsula. Inland Waters 5:283294.Google Scholar
Frenzel, P., and Boomer, I.. 2005. The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology 225:6892.Google Scholar
Fujiwara, O., Masuda, F., Sakai, T., Irizuki, T., and Fuse, K.. 2000. Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan. Sedimentary Geology 135:219230.Google Scholar
Gao, B., Yang, D., and Yang, H.. 2013. Impact of the Three Gorges Dam on flow regime in the middle and lower Yangtze River. Quaternary International 304:4350.Google Scholar
Gong, G.-C., Chang, J., Chiang, K.-P., Hsiung, T.-M., Hung, C.-C., Duan, S.-W., and Codispoti, L. A.. 2006. Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the Three Gorges Dam? Geophysical Research Letters 33(7). doi: 10.1029/2006GL025800.Google Scholar
Gu, C., Hu, L., Zhang, X., Wang, X., and Guo, J.. 2011. Climate change and urbanization in the Yangtze River delta. Habitat International 35:544552.Google Scholar
Guo, H., Hu, Q., Zhang, Q., and Feng, S.. 2012. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008. Journal of Hydrology 416:1927.Google Scholar
Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., and Bini, L. M.. 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60:845869.Google Scholar
Hong, Y., Yasuhara, M., Iwatani, H., and Mamo, B.. 2019. Baseline for ostracod-based northwestern Pacific and Indo-Pacific shallow-marine paleoenvironmental reconstructions: ecological modeling of species distributions. Biogeosciences 16:585-604.Google Scholar
Hou, Y., and Gou, Y.. 2007. Fossil Ostracoda of China. Volume 2: Cytheracea and Cytherellidae. Science Publishing House, Beijing.Google Scholar
Hsieh, T. C., Ma, K. H., and Chao, A.. (2016), iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7:14511456.Google Scholar
Irizuki, T., Takata, H., and Ishida, K.. 2006. Recent Ostracoda from Urauchi Bay, Kamikoshiki-jima Island, Kagoshima Prefecture, southwestern Japan. Laguna 13:1328.Google Scholar
Irizuki, T., Takimoto, A., Sako, M., Nomura, R., Kakuno, K., Wanishi, A., and Kawano, S.. 2011. The influences of various anthropogenic sources of deterioration on meiobenthos (Ostracoda) over the last 100 years in Suo-Nada in the Seto Inland Sea, southwest Japan. Marine Pollution Bulletin 62:20302041.Google Scholar
Irizuki, T., Ito, H., Sako, M., Yoshioka, K., Kawano, S., Nomura, R., and Tanaka, Y.. 2015. Anthropogenic impacts on meiobenthic Ostracoda (Crustacea) in the moderately polluted Kasado Bay, Seto Inland Sea, Japan, over the past 70 years. Marine Pollution Bulletin 91:149159.Google Scholar
Jiao, N., Zhang, Y., Zeng, Y., Gardner, W. D., Mishonov, A. V., Richardson, M. J., Hong, N., Pan, D., Yan, X.-H., Jo, Y.-H., Chen, C.-T. A., Wang, P., Chen, Y., Hong, H., Bai, Y., Chen, X., Huang, B., Deng, H., Shi, Y., and Yang, D.. 2007. Ecological anomalies in the East China Sea: impacts of the Three Gorges Dam? Water Research 41:12871293.Google Scholar
Kahle, D., and Wickham, H.. 2013. ggmap: spatial visualization with ggplot2. The R Journal 5:144161.Google Scholar
Kako, S. i., Nakagawa, T., Takayama, K., Hirose, N., and Isobe, A.. 2016. Impact of Changjiang River Discharge on sea surface temperature in the East China Sea. Journal of Physical Oceanography 46:17351750.Google Scholar
Kelley, L. A., Gardner, S. P., and Sutcliffe, M. J.. 1996. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Engineering, Design and Selection 9:10631065.Google Scholar
Legendre, P., and Gallagher, E. D.. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271280.Google Scholar
Legendre, P., and Legendre, L. F.. 2012. Numerical ecology, 3rd English ed. Elsevier Science, Amsterdam.Google Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., and Tilman, D.. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601613.Google Scholar
Lie, H.-J., Cho, C.-H., Lee, J.-H., and Lee, S.. 2003. Structure and eastward extension of the Changjiang River plume in the East China Sea. Journal of Geophysical Research: Oceans 108(C3). doi: 10.1029/2001JC001194Google Scholar
Liu, J. P., Li, A. C., Xu, K. H., Velozzi, D. M., Yang, Z. S., Milliman, J. D., and DeMaster, D. J.. 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research 26:21412156.Google Scholar
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.. 2013. World ocean atlas 2013, Vol. 1. Temperature. In Levitus, S., ed.; Mishonov, A., technical ed. NOAA atlas NESDIS 73. National Oceanographic Data Center, Silver Spring, Md.Google Scholar
McKee, B. A., Aller, R. C., Allison, M. A., Bianchi, T. S., and Kineke, G. C.. 2004. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes. Continental Shelf Research 24:899926.Google Scholar
Meybeck, M., Dürr, H. H., and Vörösmarty, C. J.. 2006. Global coastal segmentation and its river catchment contributors: a new look at land–ocean linkage. Global Biogeochemical Cycles 20(1). doi: 10.1029/2005GB002540.Google Scholar
Meybeck, M., and Vörösmarty, C.. 2005. Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene. Comptes Rendus Geoscience 337:107123.Google Scholar
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, and Ocean Biology Processing Group. 2014. Moderate-resolution imaging spectroradiometer (MODIS) aqua chlorophyll data, 2014 reprocessing. NASA OB.DAAC, Greenbelt, Md. doi: 10.5067/AQUA/MODIS/L3M/CHL/2014.Google Scholar
Ng, I. S., Carr, C. M., and Cottenie, K.. 2009. Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619:133143.Google Scholar
Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C.. 2005. Fragmentation and flow regulation of the world's large river systems. Science 308:405408.Google Scholar
O'Brien, R. M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality and Quantity 41:673690.Google Scholar
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H.. 2017. vegan: community ecology package, R package version 2.4-3. https://cran.r-project.org/src/contrib/Archive/vegan, accessed 1 February 2019.Google Scholar
Ozawa, H., Kamiya, T., Itoh, H., and Tsukawaki, S.. 2004. Water temperature, salinity ranges and ecological significance of the three families of recent cold-water ostracods in and around the Japan Sea. Paleontological Research 8:1128.Google Scholar
Pei, S., Shen, Z., and Laws, E. A.. 2009. Nutrient dynamics in the upwelling area of Changjiang (Yangtze River) estuary. Journal of Coastal Research 25:569580.Google Scholar
Peres-Neto, P. R., Legendre, P., Dray, S., and Borcard, D.. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:26142625.Google Scholar
Peres-Neto, P. R., and Legendre, P.. 2010. Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography 19:174184.Google Scholar
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Saito, Y., Chaimanee, N., Jarupongsakul, T., and Syvitski, J. P.. 2007. Shrinking megadeltas in Asia: sea-level rise and sediment reduction impacts from case study of the Chao Phraya delta. Inprint Newsletter of the IGBP/IHDP Land Ocean Interaction in the Coastal Zone 2007(2):39.Google Scholar
Schellenberg, S. 2007. Marine ostracods. Pp. 20462062 in Elias, S., ed. Encyclopedia of Quaternary science. Elsevier, Amsterdam.Google Scholar
Shao, M.-L., Xie, Z.-C., Han, X.-Q., Cao, M., and Cai, Q.-H.. 2008. Macroinvertebrate community structure in Three-Gorges Reservoir, China. International Review of Hydrobiology 93:175187.Google Scholar
Smith, A. J., and Horne, D. J.. 2012. Ecology of marine, marginal marine and nonmarine Ostracodes. Pp. 3764 in Holmes, J. A. and Chivas, A. R., eds. The Ostracoda: applications in Quaternary research. American Geophysical Union, Washington, DC.Google Scholar
Su, C. C., and Huh, C. A.. 2002. 210Pb, 137Cs and 239,240Pu in East china Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology 183:163178.Google Scholar
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vorosmarty, C., Saito, Y., Giosan, L., and Nicholls, R. J.. 2009. Sinking deltas due to human activities. Nature Geoscience 2:681686.Google Scholar
Tanaka, G. 2008. Recent benthonic ostracod assemblages as indicators of the Tsushima Warm Current in the southwestern Sea of Japan. Hydrobiologia 598:271284.Google Scholar
Teeter, J. W. 1973. Geographic distribution and dispersal of some Recent shallow-water marine Ostracoda. Ohio Journal of Science 73:4654.Google Scholar
Titterton, R., and Whatley, R. C.. 1988. The provincial distribution of shallow water Indo-Pacific marine Ostracoda: origins, antiquity, dispersal routes and mechanisms. Developments in Palaeontology and Stratigraphy 11:759786.Google Scholar
Tsai, A.-Y., Gong, G.-C., Sanders, R. W., Wang, C.-J., and Chiang, K.-P.. 2010. The impact of the Changjiang River plume extension on the nanoflagellate community in the East China Sea. Estuarine, Coastal and Shelf Science 89:2130.Google Scholar
Wang, H., Saito, Y., Zhang, Y., Bi, N., Sun, X., and Yang, Z.. 2011. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Science Reviews 108:80100.Google Scholar
Wang, J., Huang, J., Wu, J., Han, X., and Lin, G.. 2010. Ecological consequences of the Three Gorges Dam: insularization affects foraging behavior and dynamics of rodent populations. Frontiers in Ecology and the Environment 8:1319.Google Scholar
Wang, J., Yan, W., Chen, N., Li, X., and Liu, L.. 2015. Modeled long-term changes of DIN:DIP ratio in the Changjiang River in relation to Chl-α and DO concentrations in adjacent estuary. Estuarine, Coastal and Shelf Science 166:153160.Google Scholar
Wang, P., and Zhao, Q.. 1985. Ostracod distribution in bottom sediments of the East China Sea. Pp. 7092 in Wang, P., ed. Marine micropaleontology of China. China Ocean Press, Beijing. [In Chinese.]Google Scholar
Wang, P., Zhang, J., Zhao, Q., Min, Q., Bian, Y., Zheng, L., Cheng, X., and Chen, R.. 1988. Foraminifera and Ostracoda in bottom sediments of the East China Sea. China Ocean Press, Beijing.Google Scholar
White, D., and Gramacy, R.. 2012. maptree: mapping, pruning, and graphing tree models, R package version 1.4–7. https://cran.r-project.org/web/packages/maptree/index.html, accessed 1 February 2019.Google Scholar
Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag New York.Google Scholar
Woodroffe, C. D., and Saito, Y.. 2011. River-dominated coasts. In: Wolanski, E. and McLusky, D. S., eds. Treatise on estuarine and coastal science 3:117135. Waltham: Academic.Google Scholar
Wu, J., Huang, J., Han, X., Gao, X., He, F., Jiang, M., Jiang, Z., Primack, R. B., and Shen, Z.. 2004. The Three Gorges Dam: an ecological perspective. Frontiers in Ecology and the Environment 2:241248.Google Scholar
Yang, H., Yang, S., Xu, K., Milliman, J., Wang, H., Yang, Z., Chen, Z., and Zhang, C.. 2018. Human impacts on sediment in the Yangtze River: a review and new perspectives. Global and Planetary Change 162:817.Google Scholar
Yang, S. L., Xu, K. H., Milliman, J. D., Yang, H. F., and Wu, C. S.. 2015. Decline of Yangtze River water and sediment discharge: impact from natural and anthropogenic changes. Scientific Reports 5:12581.Google Scholar
Yasuhara, M., Yoshikawa, S., and Nanayama, F.. 2005. Reconstruction of the Holocene seismic history of a seabed fault using relative sea-level curves reconstructed by ostracode assemblages: case study on the Median Tectonic Line in Iyo-nada Bay, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 222:285312.Google Scholar
Yasuhara, M., and Seto, K.. 2006. Holocene relative sea-level change in Hiroshima Bay, Japan: a semi-quantitative reconstruction based on ostracodes. Paleontological Research 10:99116.Google Scholar
Yasuhara, M., Yamazaki, H., Tsujimoto, A., and Hirose, K.. 2007. The effect of long-term spatiotemporal variations in urbanization-induced eutrophication on a benthic ecosystem, Osaka Bay, Japan. Limnology and Oceanography 52:16331644.Google Scholar
Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A., and Katsuki, K.. 2012a. Human-induced marine ecological degradation: micropaleontological perspectives. Ecology and Evolution 2:32423268.Google Scholar
Yasuhara, M., Hunt, G., van Dijken, G., Arrigo, K. R., Cronin, T. M., and Wollenburg, J. E.. 2012b. Patterns and controlling factors of species diversity in the Arctic Ocean. Journal of Biogeography 39:20812088.Google Scholar
Yasuhara, M., Tittensor, D. P., Hillebrand, H., and Worm, B.. 2017. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biological Reviews 92:199215.Google Scholar
Zhai, M., Nováček, O., Výravský, D., Syrovátka, V., Bojková, J., and Helešic, J.. 2015. Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. Hydrobiologia 745:225239.Google Scholar
Zhao, Q. 1987. A study of the distribution of Recent ostracod faunas from the coastal areas of the East China and Yellow Seas. Acta Oceanographica Sinica 6:413420.Google Scholar
Zhao, Q., and Wang, P.. 1988. Distribution of modern Ostracoda in the shelf seas off China. Developments in Palaeontology and Stratigraphy 11:805821.Google Scholar
Zhu, J., Chen, C., Ding, P., Li, C., and Lin, H.. 2004. Does the Taiwan warm current exist in winter? Geophysical Research Letters 31(12). doi: 10.1029/2004GL019997.Google Scholar
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and Biddle, M. M.. 2013. World ocean atlas 2013, Vol. 2. Salinity. In Levitus, S., ed.; Mishonov, A., technical ed. NOAA atlas NESDIS 74. National Oceanographic Data Center, Silver Spring, Md.Google Scholar