Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T07:40:43.911Z Has data issue: false hasContentIssue false

Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity

Published online by Cambridge University Press:  08 April 2016

Alistair J. McGowan
Affiliation:
Department of Palaeontology, Natural History Museum, London SW7 5BD, United Kingdom. E-mail: [email protected]
Andrew B. Smith
Affiliation:
Department of Palaeontology, Natural History Museum, London SW7 5BD, United Kingdom. E-mail: [email protected]

Abstract

The consensus view that the amount of rock available for sampling does not significantly and systematically bias Phanerozoic marine diversity patterns has broken down. How changes in rock availability and sampling intensity affect our estimates of past biodiversity has been investigated with a variety of new approaches. A number of proxies for the amount of rock available for sampling have been used, but most of these proxies do not rely directly on evidence from large-scale geological maps (maps that cover small areas) and accompanying memoirs. Most previous map-based studies focused on single regions or relied on small-scale synoptic maps. We collected data from published geological maps and memoirs from western Europe, Australia, and Chile, which we combined with COSUNA data from the United States to generate the first multiregional data set for investigating whether the global Phanerozoic marine diversity record is a true global record, or is instead biased toward North America and Western Europe as has long been suspected. Both short and long-term trends in variation in the amount of outcrop display limited correlation among the regions studied. A series of diversification models obtained better matches to observed fossil diversity from the European and U.S. records than for the Chilean and Australian records, further supporting suspicions that the global Phanerozoic diversity curve is disproportionately influenced by European and U.S. fossil data. These results indicate that future research into Phanerozoic marine diversity patterns should not continue to apply global eustatic curves as a proxy for rock at outcrop, but should use regional data on rock occurrence.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A., and Briggs, D. E. G. 1993. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21:6568.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Benton, M. J., and Emerson, B. C. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50:2340.Google Scholar
Blatt, H., and Jones, R. L. 1975. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geological Society of America Bulletin 86:10851088.Google Scholar
Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios 10:597616.Google Scholar
Brett, C. E. 1998. Sequence stratigraphy, paleoecology and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13:241262.Google Scholar
Chamberlin, T. C. 1909. Diastrophism as the ultimate basis of correlation. Journal of Geology 17:689693.Google Scholar
Childs, O. E. 1985. Correlation of stratigraphic units of North America: COSUNA. American Association of Petroleum Geologists Bulletin 69:173180.Google Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Cooper, R. A., Matcham, I., Jones, C. M., Maxwell, P. A., and Marshall, B. A. 2006a. Second-order sequence stratigraphic controls on the quality of the fossil record at an active margin: New Zealand to Recent shelf molluscs. Palaios 21:86105.Google Scholar
Crampton, J. S., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M. 2006b. The ark was full! Constant to declining shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.Google Scholar
Dewey, J. F., and Pitman, W. C. 1998. Sea-level changes: mechanisms, magnitudes and rates. In Pindell, James M. and Drake, Charles L., eds. Paleogeographic evolution and non-glacial eustasy, northern South America. SEPM Special Publication 58:116. Society for Sedimentary Geology, Tulsa, Okla.Google Scholar
Fara, E. 2002. Sea-level variations and the quality of the continental fossil record. Journal of the Geological Society, London 159:489491.Google Scholar
Fischer, A. G. 1984. The two Phanerozoic supercycles. Pp. 129150in Berggren, W. A., ed. Catastrophes and earth history. Princeton University Press, Princeton, N.J.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 265:74102.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.Google Scholar
Gradstein, F. M., Ogg, J. G., Agterberg, F. P., Bleeker, W., Cooper, R. A., Davydov, V., Gibbard, P., Hinnov, L., House, M. R., Lourens, L., Luterbacher, H.-P., McArthur, J., Melchin, M. J., Robb, L. J., Shergold, J., Villeneuve, M., Wardlaw, B. R., Ali, J., Brinkuis, H., Hilgen, F. J., Hooker, J., Howarth, R. J., Knoll, A. H., Laskar, J., Monechi, S., Plumb, K. A., Powell, J., Raffi, I., Rohl, U., Sanfillipo, A., Schmitz, B., Shackleton, N. J., Shields, G. A., Strauss, H., Van Dam, J., van Koifschoten, T., Veizer, J., and Wilson, D. 2004. A geological time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Hallam, A. 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London B 325:437455.Google Scholar
Hallam, A. 1992. Phanerozoic sea-level changes. Columbia University Press, New York.Google Scholar
Hammer, Ø., and Harper, D. A. T. 2006. Paleontological data analysis. Blackwell Publishing, Oxford.Google Scholar
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., and Vail, P. R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In de Grasiansky, P.-C., Hardenbol, J., Jacquin, T., and Vail, P. R., eds. Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM Special Publication 60:314. Society for Sedimentary Geology, Tulsa, Okla.Google Scholar
Hilborn, H., and Mangel, M. 1997. The ecological detective: confronting models with data. Princeton University Press, Princeton, N.J.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.Google Scholar
Holland, S. M. 1999. The new stratigraphy and its promise for paleobiology. Paleobiology 25:409416.Google Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):148168.Google Scholar
Jackson, J. B. C., and Johnson, K. G. 2001. Measuring past biodiversity. Science 293:24012404.Google Scholar
Johnson, J. B., and Omland, K. S. 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution 19:101108.Google Scholar
Johnson, J. G. 1974. Extinction of perched faunas. Geology 2:479482.Google Scholar
Kidwell, S. M., and Holland, S. M. 2002. The quality of the fossil record. Annual Review of Ecology and Systematics 33:561588.Google Scholar
Kirchner, J. W., and Weil, A. 2000a. Correlations in fossil extinction and origination rates through geological time. Proceedings of the Royal Society of London B 267:13011309.Google Scholar
Kirchner, J. W., and Weil, A. 2000b. Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177180.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Barbour Wood, S. L., and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Major, R. B. 1973. Woodroffe, South Australia. Explanatory notes, 1:250000 geological map series, sheet SG/52-12, international index. Department of Mines, Geological Survey of Australia, Canberra.Google Scholar
Newell, N. D. 1962. Paleontological gaps and geochronology. Journal of Paleontology 36:592610.Google Scholar
Newell, N. D. 1967. Revolutions in the history of life. In Albritton, C. C. Jr., Hubbert, M. K., Wilson, L. G., and Newell, N. D., eds. Uniformity and simplicity: a symposium on the principle of the uniformity of nature. Geological Society of America Special Paper 89:6391.CrossRefGoogle Scholar
Peters, S. E. 2005. Geological constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.Google Scholar
Peters, S. E. 2006a. Macrostratigraphy of North America. Journal of Geology 114:391412.Google Scholar
Peters, S. E. 2006b. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Rohde, R. A., and Muller, R. A. 2005. Cycles in fossil diversity. Nature 434:208210.CrossRefGoogle ScholarPubMed
Ronov, A. B. 1994. Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. American Journal of Science 294:777801.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:246257.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Sloss, L. L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin 74:93113.Google Scholar
Sloss, L. L. 1976. Areas and volumes of cratonic sediments in western North America and eastern Europe. Geology 4:272276.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed
Smith, A. B. 2007. Phanerozoic marine diversity: problems and prospects. Journal of the Geological Society, London 164:731745.Google Scholar
Smith, A. B., and McGowan, A. J. 2005. Cyclicity in the fossil record mirrors rock outcrop area. Biology Letters 2:13.Google Scholar
Smith, A. B., and McGowan, A. J. 2007. The shape of the marine palaeodiversity curve using the Phanerozoic sedimentary rock record of western Europe. Palaeontology 50:765774.Google Scholar
Struckmeyer, H. I. M., and Totterdell, J. M. 1990. Australia: evolution of a continent. Australian Government Publishing Service, Canberra.Google Scholar
Sutherland, W. J., ed. 1996. Ecological census techniques: a handbook. Cambridge University Press, Cambridge.Google Scholar
Vail, P. R., Mitchum, R. M. Jr., Todd, R. G., Widmier, J. M., Thompson, S. III, Sangree, J. N., Bubb, J. N., and Hatlelid, W. G. 1977. Seismic stratigraphy and global changes of sea level. In Payton, C. E., ed. Seismic stratigraphy: applications to hydrocarbon exploration. AAPG Memoir 26:49205. American Association of Petroleum Geologists, Tulsa, Okla.Google Scholar
Vermeesch, P. 2003. A second look at the geologic map of China: the “Sloss Approach.” International Geology Review 45:119132.CrossRefGoogle Scholar
Walker, L. J., Wilkinson, B. H., and Ivany, L. C. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow shelf and deep-marine settings. Journal of Geology 110:7587.Google Scholar
Wang, S. C., and Dodson, P. 2006. Estimating the diversity of dinosaurs. Proceedings of the National Academy of Sciences USA 103:1360113605.Google Scholar
Wignall, P. B., and Benton, M. J. 1999. Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society, London 156:453456.Google Scholar