Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T17:59:57.928Z Has data issue: false hasContentIssue false

Apparent versus real biotic effects of transgressions and regressions

Published online by Cambridge University Press:  08 February 2016

David Jablonski*
Affiliation:
Department of Geological Sciences and Marine Science Institute, University of California, Santa Barbara, California 93106

Abstract

In evaluating the biotic effects of transgressions and regression, care must be taken to ensure that observed patterns are not simply an artifact of the location of available stratigraphic sections along an ancient onshore-offshore gradient of adaptive types. Analysis of Recent bivalves suggests that very nearshore benthic assemblages are dominated by species that are geographically more widespread, are more eurytopic, and more often have planktotrophic larvae than species in offshore assemblages (Jackson 1974; Jablonski and Valentine 1980); this pattern may serve as a null hypothesis for paleobiogeographic analysis. Late Cretaceous bivalve and gastropod faunas of the Gulf and Atlantic Coastal Plain exhibit decreasing levels of endemism and increasing mean geographic range over the course of regression and return to high levels of endemism and low mean geographic range with the succeeding transgression. In addition, species with longer durations are more frequent at peak regression, while geologically shorter-lived species are more prevalent at peak transgression. As seen in Recent examples, the molluscan assemblages from nearshore facies have a higher proportion of species with broad environmental tolerances and planktotrophic larvae, and thus more extensive geographic and stratigraphic ranges, than do the more offshore shelf assemblages. Because late regressive phases are represented only by very nearshore facies, these directional changes in biogeographic and evolutionary characteristics are most parsimoniously interpreted as a reflection of the nature of the facies available for sampling rather than biotic effects of transgression and regression.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abele, L. G. and Walters, K. 1979. The stability-time hypothesis: reevaluation of the data. Am. Nat. 114:559569.CrossRefGoogle Scholar
Anderson, E. J. and Goodwin, P. W. 1977. Transgressive sequences: accumulations of aggradational cycles (Abstr.). Geol. Soc. Am. Abstr. 9:878879.Google Scholar
Anderson, E. J. and Goodwin, P. W. 1978. Punctuated aggradational cycles: the Helderberg Group, Lower Devonian of New York (Abstr.). Geol. Soc. Am. Abstr. 10:30.Google Scholar
Berry, W. B. N. 1977. Graptolite biostratigraphy: a wedding of classical principles and current concepts. pp. 321338. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pennsylvania.Google Scholar
Boucot, A. J. 1975a. Standing diversity of fossil groups in successive intervals of geologic time viewed in the light of changing levels of provincialism. J. Paleontol. 49:11051111.Google Scholar
Boucot, A. J. 1975b. Evolution and Extinction Rate Controls. 427 pp. Elsevier; Amsterdam.Google Scholar
Bourgeois, J. 1979. Retrogradational shelf sequence—Upper Cretaceous (Campanian-Maestrichtian) Cape Sebastian Sandstone, southwestern Oregon (Abstr.). Am. Assoc. Petrol. Geol. Bull. 63:422.Google Scholar
Bretsky, P. W. 1969. Evolution of Paleozoic benthic marine communities. Palaeogeogr., Palaeoclimatol., Palaeoecol. 6:4559.CrossRefGoogle Scholar
Bretsky, P. W. 1973. Evolutionary patterns in the Paleozoic Bivalvia: documentation and some theoretical considerations. Geol. Soc. Am. Bull. 84:20792096.2.0.CO;2>CrossRefGoogle Scholar
Bretsky, P. W. and Lorenz, D. M. 1970. Adaptive response to environmental stability: a unifying concept in paleoecology. Proc. N. Am. Paleontol. Conv. E:522550.Google Scholar
Cameron, B. 1978. Punctuated aggradational cycles: medial Ordovician Black River and Trenton Groups of New York and Ontario (Abstr.). Geol. Soc. Am. Abstr. 10:3536.Google Scholar
Chanley, P. E. 1968. Larval development in the Class Bivalvia. Mar. Biol. Assoc. India Symp. on Mollusca. II:475481.Google Scholar
Connor, E. F. and McCoy, E. D. 1979. The statistics and biology of the species-area relationship. Am. Nat. 113:791833.CrossRefGoogle Scholar
Cooper, M. R. 1977. Eustacy during the Cretaceous: its implications and importance. Palaeogeogr., Palaeoclimatol., Palaeoecol. 22:160.CrossRefGoogle Scholar
Crowley, P. H. 1978. Effective size and the persistence of ecosystems. Oecologia. 35:185195.CrossRefGoogle ScholarPubMed
Franks, P. C. 1980. Models of marine transgression—example from Lower Cretaceous fluvial and paralic deposits, north-central Kansas. Geology. 8:5661.2.0.CO;2>CrossRefGoogle Scholar
Goodwin, P. W. and Anderson, E. J. 1980. Punctuated aggradational cycles: A general hypothesis of stratigraphic accumulation. Geol. Soc. America, Abstracts with Programs. 12:435.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Hallam, A. 1977. Jurassic bivalve biogeography. Paleobiology. 3:5873.CrossRefGoogle Scholar
Hallam, A. 1978. How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves. Paleobiology. 4:1625.CrossRefGoogle Scholar
Hansen, T. A. 1978. Larval dispersal and species longevity in Lower Tertiary gastropods. Science. 199:885887.CrossRefGoogle ScholarPubMed
Hickman, C. S. 1974. Characteristics of bathyal mollusk faunas in the Pacific Coast Tertiary. Annu. Rep. West. Soc. Malac. 1:4150.Google Scholar
Jablonski, D. 1979. Paleoecology, paleobiogeography, and evolutionary patterns of Late Cretaceous Gulf and Atlantic Coastal Plain mollusks. 604 pp. Unpubl. Ph.D. Diss., Yale Univ.Google Scholar
Jablonski, D. and Lutz, R. A. 1980. Larval shell morphology: ecological and paleontological applications. pp. 323377. In: Rhoads, D. C. and Lutz, R. A., eds. Skeletal Growth of Marine Organisms. Plenum; New York.CrossRefGoogle Scholar
Jablonski, D. and Valentine, J. W. 1980. Adaptive strategies in Recent Pacific Rim shelf benthos and implications for Cenozoic paleobiogeography (Abstr.). Proc. 2nd Int. Congr. Syst. Evol. Biol. Full paper to be published in Symposium Proceedings.Google Scholar
Jackson, J. B.C. 1973. The ecology of molluscs of Thalassia community, Jamaica, West Indies. I. Distribution, environmental physiology, and ecology of common shallow-water species. Bull. Mar. Sci. 23:313350.Google Scholar
Jackson, J. B.C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. Am. Nat. 108:541560.CrossRefGoogle Scholar
Jackson, J. B. C. 1977. Some relationships between habitat and biostratigraphic potential of marine benthos. pp. 6572. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pennsylvania.Google Scholar
Kauffman, E. G. 1967. Coloradoan macroinvertebrate assemblages, central Western Interior, United States. pp. 67143. In: Kauffman, E. G. and Kent, H. C., eds. Paleoenvironments of the Cretaceous Seaway—A Symposium. Colorado School of Mines, Spec. Publ.Google Scholar
Kauffman, E. G. 1972. Evolutionary rates and patterns of North American Cretaceous Mollusca. Proc. 24th Int. Geol. Congr. 7:174189.Google Scholar
Kauffman, E. G. 1973. Cretaceous Bivalvia. pp. 353383. In: Hallam, A., ed. Atlas of Paleobiogeography. Elsevier; Amsterdam.Google Scholar
Kauffman, E. G. 1975. Dispersal and biostratigraphic potential of Cretaceous benthonic Bivalvia in the Western Interior. Geol. Assoc. Canada Spec. Pap. 13:163194.Google Scholar
Kauffman, E. G. 1977. Evolutionary rates and biostratigraphy. pp. 109141. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pennsylvania.Google Scholar
Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous Bivalvia. Phil. Trans. R. Soc. London. 284B:277304.Google Scholar
Larson, D. W. and Byers, C. W. 1978. Depositional facies and basin evolution for the Mowry Shale (Lower Cretaceous), western and central Wyoming (Abstr.). Geol. Soc. Am. Abstr. 10:441.Google Scholar
MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. 203 pp. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Mellen, F. F. 1958. Cretaceous shelf sediments of Mississippi. Miss. Geol. Surv. Bull. 85:112 pp.Google Scholar
Mileikovsky, S. A. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar. Biol. 10:193213.CrossRefGoogle Scholar
Moore, R. C. 1954. Evolution of Late Paleozoic invertebrates in response to major oscillations of shallow seas. Mus. Comp. Zool. Bull. 112:259286.Google Scholar
Murray, G. E. 1961. Geology of the Atlantic and Gulf Coastal Province of North America. 692 pp. Harper; New York.Google Scholar
Obradovich, J. D. and Cobban, W. A. 1975. A time-scale for the Late Cretaceous of the Western Interior of North America. Geol. Assoc. Canada Spec. Pap. 13:3154.Google Scholar
Owens, J. P., Minard, J. P., Sohl, N. F., and Mello, J. F. 1970. Stratigraphy of the outcropping post-Magothy Upper Cretaceous formations in southern New Jersey and northern Delmarva Peninsula, Delaware and Maryland. U.S. Geol. Surv. Prof. Pap. 674:60 pp.Google Scholar
Owens, J. P. and Sohl, N. F. 1969. Shelf and deltaic paleoenvironments in the Cretaceous-Tertiary formations of the New Jersey Coastal Plain. pp. 235278. In: Subitzky, S., ed. Geology of Selected Areas in New Jersey and Eastern Pennsylvania and Guidebook of Excursions. Rutgers Univ. Press; New Brunwsick, New Jersey.Google Scholar
Owens, J. P., Sohl, N. F., and Minard, J. P. 1977. A field guide to Cretaceous and Lower Tertiary beds of the Raritan and Salisbury Embayments, New Jersey, Delaware, and Maryland. 113 pp. Am. Assoc. Petrol. Geol. & Soc. Econ. Paleontol. Mineral.; Washington, D.C.Google Scholar
Picken, G. B. 1980. The distribution, growth, and reproduction of the Antarctic limpet Nacella (Patinigera) concinna (Strebel, 1980). J. Exp. Mar. Biol. Ecol. 42:7185.CrossRefGoogle Scholar
Preston, F. W. 1962. The canonical distribution of commonness and rarity: Part II. Ecology. 43:410432.CrossRefGoogle Scholar
Pryor, W. A. 1960. Cretaceous sedimentation in the upper Mississippi embayment. Am. Assoc. Petrol. Geol. Bull. 44:14731504.Google Scholar
Radwin, G. E. and Chamberlin, J. L. 1973. Patterns of larval development in stenoglossan gastropods. Trans. San Diego Soc. Nat. Hist. 17:107117.CrossRefGoogle Scholar
Raup, D. M. and Stanley, S. M. 1978. Principles of Paleontology. 2nd ed.Freeman; San Francisco.Google Scholar
Rollins, H. B., Carothers, M., and Donahue, J. 1979. Transgression, regression and fossil community succession. Lethaia. 12:89104.CrossRefGoogle Scholar
Ryer, T. A. 1977. Patterns of Cretaceous shallow-marine sedimentation, Coalville and Rockport areas, Utah. Geol. Soc. Am. Bull. 88:177188.2.0.CO;2>CrossRefGoogle Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. Am. Nat. 102:243282.CrossRefGoogle Scholar
Scheltema, R. S. 1971. Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol. Bull. 140:284322.CrossRefGoogle Scholar
Scheltema, R. S. 1977. Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. pp. 73108. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pennsylvania.Google Scholar
Scheltema, R. S. 1978. On the relationship between dispersal of pelagic veliger larvae and the evolution of marine prosobranch gastropods. pp. 303322. In: Battaglia, B. and Beardmore, J. A., eds. Marine Organisms: Genetics, Ecology and Evolution. Plenum; New York.Google Scholar
Schopf, T. J. M. 1979. The role of biogeographic provinces in regulating marine faunal diversity through geologic time. pp. 449457. In: Gray, J. and Boucot, A. J., eds. Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State Univ. Press; Corvallis, Oregon.Google Scholar
Shuto, T. 1974. Larval ecology of prosobranch gastropods and its bearing on biogeography and paleontology. Lethaia. 7:239256.CrossRefGoogle Scholar
Sohl, N. F. 1960. Archeogastropoda, Mesogastropoda and stratigraphy of the Ripley, Owl Creek, and Prairie Bluff Formations. U.S. Geol. Surv. Prof. Pap. 331-A:1151.Google Scholar
Sohl, N. F. 1964a. Neogastropoda, Opisthobranchia and Basommatophora from the Ripley, Owl Creek and Prairie Bluff Formations. U.S. Geol. Surv. Prof. Pap. 331-B:153344.Google Scholar
Sohl, N. F. 1964b. Gastropods from the Coffee Sand (Upper Cretaceous) of Mississippi. U.S. Geol. Surv. Prof. Pap. 331-C:345394.Google Scholar
Sohl, N. F. 1977a. Benthic marine molluscan associations from the Upper Cretaceous of New Jersey and Delaware. pp. 7094. In: Owens, J. P. et al. A Field Guide to Cretaceous and Lower Tertiary Beds of the Raritan and Salisbury Embayments, New Jersey, Delaware, and Maryland. Am. Assoc. Petrol. Geol. & Soc. Econ. Paleontol. Mineral.; Washington, D.C.Google Scholar
Sohl, N. F. 1977b. Upper Cretaceous molluscan assemblages of the northern part of the Atlantic Coastal Plain (Abstr.). J. Paleontol. 51 (Suppl. to No. 2):26.Google Scholar
Spight, T. M. 1977. Latitude, habitat, and hatching type for muricacean gastropods. Nautilus. 91:6771.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. W. H. Freeman; San Francisco, California.Google Scholar
Stearns, S. C. 1976. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51:347.CrossRefGoogle ScholarPubMed
Stephenson, L. W. 1914. Cretaceous deposits of the eastern Gulf region and species of Exogyra from the eastern Gulf region and the Carolinas. U.S. Geol. Surv. Prof. Pap. 81:55 pp.Google Scholar
Stephenson, L. W. 1923. Cretaceous formations of North Carolina. North Carolina Geol. and Econ. Surv. 5:604 pp.Google Scholar
Stephenson, L. W. 1933. The zone of Exogyra cancellata traced twenty-five hundred miles. Am. Assoc. Petrol. Geol. Bull. 17:13511361.Google Scholar
Stephenson, L. W. 1941. The larger invertebrate fossils of the Navarro Group of Texas. Univ. Texas Publ. 4101:641 pp.Google Scholar
Stephenson, L. W. 1955. Owl Creek (Upper Cretaceous) fossils from Crowleys Ridge, southeastern Missouri. U.S. Geol. Surv. Prof. Pap. 274-E:97140.Google Scholar
Stephenson, L. W. 1956. Fossils from the Eutaw Formation, Chattahoochee River region, Alabama-Georgia. U.S. Geol. Surv. Prof. Pap. 274-J:227250.Google Scholar
Stephenson, L. W. and Monroe, W. H. 1940. The Upper Cretaceous deposits. Mississippi State Geol. Surv. Bull. 40:296 pp.Google Scholar
Swift, D. J. P. 1968. Coastal erosion and transgressive stratigraphy. J. Geol. 76:444456.CrossRefGoogle Scholar
Swift, D. J. P. 1976. Coastal sedimentation. pp. 255310. In: Stanley, D. J. and Swift, D. J. P., eds. Marine Sediment Transport and Environmental Management. Wiley; New York.Google Scholar
Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25:145.CrossRefGoogle ScholarPubMed
Thorson, G. 1961. Length of pelagic life in marine bottom invertebrates as related to larval transport by ocean currents. pp. 455474. In: Sears, M., ed. Oceanography. Am. Assoc. Adv. Sci. Publ. 67; Washington, D.C.Google Scholar
Valentine, J. W. 1973. Plates and provinciality, a theoretical history of environmental discontinuities. Spec. Pap. Palaeontol. 12:7992.Google Scholar
Valentine, J.W. and Ayala, F. J. 1978. Adaptive strategies in the sea. pp. 323345. In: Battaglia, B. and Beardmore, J. A., eds. Marine Organisms: Genetics, Ecology and Evolution. Plenum; New York.Google Scholar
Vermeij, G. J. 1972. Endemism and environment: some shore molluscs of the tropical Atlantic. Am. Nat. 106:89101.CrossRefGoogle Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation: Patterns of Marine Life. 332 pp. Harvard Univ. Press; Cambridge, Massachusetts.Google Scholar