Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T18:11:23.613Z Has data issue: false hasContentIssue false

Analyzing temporal trends in regional diversity: a biogeographic perspective

Published online by Cambridge University Press:  20 May 2016

Kaustuv Roy*
Affiliation:
Section of Ecology, Behavior and Evolution, Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116. [email protected]

Abstract

Evidence for species range shifts in response to climatic change is common in the Pleistocene and earlier fossil record. However, little work has been done to model how such shifts in species range limits would change compositions of species assemblages over different spatial scales. Here I present a simple model that explores the role of biogeography in constraining changes in the compositions of species assemblages under the null hypothesis of random range shifts. The model predicts that localities where most species are far away from the edges of their ranges (e.g., localities at the center of a biogeographic province) would show relatively stable diversity patterns even during episodes of climatic change. Only localities with many range endpoints (such as those near the edges of biogeographic provinces) would show large fluctuations in species composition (and richness) in response to changes in the ambient climatic conditions. I test the predictions of the model using (1) simulations and (2) the Pleistocene bivalve fauna of California. The simulations as well as the empirical data from the Pleistocene terraces are consistent with the model predictions. These results show that attempts to quantify temporal trends in local and regional diversity and assemblage compositions need to take biogeographic structure into account.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Addicott, W. O. 1966. Late Pleistocene marine paleoecology and zoogeography in central California. U.S. Geological Survey Professional Paper 523C:C121.Google Scholar
Alroy, J. 1999. Putting North America's end-Pleistocene megafaunal extinction in context: large scale analyses of spatial patterns, extinction rates, and size distributions. Pp. 105143in MacPhee, R. D. E., ed. Extinctions in near time: causes, contexts, and consequences. Plenum, New York.Google Scholar
Barry, J. P.Baxter, C. H.Sagarin, R. D.Gilman, S. E. 1995. Climate-related long-term faunal changes in a California rocky intertidal community. Science 267:672675.Google Scholar
Baumiller, T. K. 1996. Exploring the pattern of coordinated stasis: simulations and extinction scenarios. Palaeogeography, Palaeoclimatology, Palaeoecology 127:135145.Google Scholar
Brett, C. E.Ivany, L. C.Schopf, K. M. 1996. Coordinated stasis: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 127:120.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Cannariato, K. G.Kennett, J. P.Behl, R. J. 1999. Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: ecological and evolutionary responses. Geology 27:6366.Google Scholar
Case, T. J.Taper, M. L. 2000. Interspecific competition, gene flow, environmental gradients, and the coevolution of species borders. American Naturalist 155:583605.Google Scholar
Chesson, P.Huntley, N. 1989. Short-term instabilities and long-term community dynamics. Trends in Ecology and Evolution 4:293298.Google Scholar
Colwell, R. K.Winkler, D. W. 1984. A null model for null models in biogeography. Pp. 344359in Strong, D. R.Simberloff, D.Abele, L. G.Thistle, A. B., eds. Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, N.J.Google Scholar
Connor, E. F.Simberloff, D. 1978. Species number and compositional similarity of the Galapagos flora and avifauna. Ecological Monographs 48:219248.Google Scholar
Connor, E. F.Simberloff, D. 1979. The assembly of species communities: chance or competition? Ecology 60:11321140.Google Scholar
Coope, G. R. 1995. The effects of quaternary climatic changes on insect populations: lessons from the past. Pp. 3048in Harrington and Stork 1995.Google Scholar
Cronin, T. M.Whatley, R.Wood, A.Tsukagoshi, A.Ikeya, N., E.Brouwers, M.Briggs, W. M. Jr. 1993. Microfaunal evidence for elevated Pliocene temperatures in the Arctic ocean. Paleoceanography 8:161173.Google Scholar
Davis, A. J.Jenkinson, L. S.Lawton, J. H.Shorrocks, B.Wood, S. 1998a. Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783786.Google Scholar
Davis, A. J.Lawton, J. H.Shorrocks, B.Jenkinson, L. S. 1998b. Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. Journal of Animal Ecology 67:600612.Google Scholar
Dayton, P. K. 1989. Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:14841486.Google Scholar
Diamond, J.Gilpin, M. 1982. Examination of the “null” model of Connor and Simberloff for species co-occurrences on islands. Oecologia 52:6474.Google Scholar
DiMichele, W. A. 1994. Ecological patterns in time and space. Paleobiology 20:8992.Google Scholar
Dowsett, H.Thompson, R.Barron, J.Cronin, T.Fleming, F.Ishman, S.Poore, R.Willard, D.Holtz, T. Jr. 1994. Joint investigations of the Middle Pliocene climate I: PRISM paleoenvironmental reconstructions. Global and Planetary Change 9:169195.Google Scholar
Emanuel, W. R.Shugart, H. H.Stevenson, M. P. 1985. Climatic change and broad-scale distribution of terrestrial ecosystem complexes. Climatic Change 7:2943.Google Scholar
Emerson, W. K. 1956. Pleistocene invertebrates from Punta China, Baja California, Mexico. Bulletin of the American Museum of Natural History 111:317342.Google Scholar
Emerson, W. K. 1980. Invertebrate faunules of Late Pleistocene age, with zoogeographic implications from Turtle Bay, Baja California Sur, Mexico. Nautilus 94:6789.Google Scholar
Enquist, B. J.Jordan, M. A.Brown, J. H. 1995. Connections between ecology, biogeography, and paleobiology: relationship between local abundance and geographic distribution in fossil and recent mollusks. Evolutionary Ecology 9:586604.Google Scholar
FAUNMAP Working Group. 1996. Spatial responses of mammals to late Quaternary environmental fluctuations. Science 272:16011606.Google Scholar
France, R. L. 1991. Empirical methodology for predicting changes in species range extension and richness associated with climate warming. International Journal of Biometeorology 34:211216.Google Scholar
Gleason, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53:726.Google Scholar
Harrington, R.Stork, N. E., eds. 1995. Insects in a changing environment. Academic Press, London.Google Scholar
Holland, S. M. 1996. Recognizing artifactually generated coordinated stasis: implications of numerical models and strategies for field tests. Palaeogeography, Palaeoclimatology, Palaeoecology 127:147156.Google Scholar
Ikeya, N.Cronin, T. M. 1993. Quantitative analysis of Ostracoda and water masses around Japan: application to Pliocene and Pleistocene paleoceanography. Micropaleontology 39:263281.Google Scholar
Jablonski, D.Valentine, J. W. 1990. From regional to total geographic ranges: testing the relationship in Recent bivalves. Paleobiology 16:126142.Google Scholar
Jackson, J. B. C.Budd, A. F.Pandolfi, J. M. 1996. The shifting balance of natural communities? Pp. 89122in Jablonski, D.Erwin, D. H.Lipps, J. H.Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Jordan, E. K. 1926. Molluscan fauna of the Pleistocene of San Quintin Bay, Lower California. Proceedings of the California Academy of Sciences 15:241255.Google Scholar
Kanakoff, G. P.Emerson, W. K. 1959. Late Pleistocene invertebrates of the Newport Bay area, California. Los Angeles County Museum Contributions in Science 31:347.Google Scholar
Kern, J. P. 1977. Origin and history of upper Pleistocene marine terraces, San Diego, California. Geological Society of America Bulletin 88:15531566.Google Scholar
Kern, J. P.Stump, T. E.Dowlen, R. J. 1971. An upper Pleistocene marine fauna from Mission Bay, San Diego, California. Transactions of the San Diego Society of Natural History 16:329338.Google Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.Google Scholar
Lawton, J. H. 1995. The responses of insects to climatic change. Pp. 326in Harrington and Stork 1995.Google Scholar
Lindberg, D. R.Lipps, J. H. 1996. Reading the chronicle of Quaternary temperate rocky shore faunas. Pp. 161182in Jablonski, D.Erwin, D. H.Lipps, J. H.Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Malanson, G. P. 1993. Comment on modeling ecological response to climate change. Climatic Change 23:95109.Google Scholar
Markwick, P. J. 1998. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates; implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 137:205271.Google Scholar
Miller, A. I. 1997. Coordinated stasis or coincident relative stability? Paleobiology 23:155164.Google Scholar
Overpeck, J. T.Bertlein, P. J.Webb, T. III. 1991. Potential magnitude of future vegetation change in eastern North America: comparisons with the past. Science 254:692695.Google Scholar
Overpeck, J. T.Webb, R. S.Webb, T. III. 1992. Mapping eastern North American vegetation change of the past 18 ka: non-analogues and the future. Geology 20:10711074.Google Scholar
Pandolfi, J. M. 1996. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152176.Google Scholar
Parmesan, C. 1996. Climate and species range. Nature 382:765766.Google Scholar
Patzkowsky, M. E.Holland, S. M. 1996. Extinction, invasion and sequence stratigraphy: patterns of faunal change in the middle and upper Ordovician of the eastern United States. In Witzke, B. J.Ludvigson, G. A.Day, J., eds. Paleozoic sequence stratigraphy: views from the North American craton. Geological Society of America Special Paper 306:131142.Google Scholar
Patzkowsky, M. E.Holland, S. M. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios 14:301323.Google Scholar
Pease, C. M.Lande, R.Bull, J. J. 1989. A model of population growth, dispersal and evolution in a changing environment. Ecology 70:16571664.Google Scholar
Peters, R. L. 1992. Conservation of biological diversity in the face of climatic change. Pp. 1630in Peters, R. L.Lovejoy, T. E., eds. Global warming and biological diversity. Yale University Press, New Haven, Conn.Google Scholar
Roughgarden, J. 1984. Competition and theory in community ecology. Pp. 321in Salt 1984.Google Scholar
Roy, K.Jablonski, D.Valentine, J. W. 1994. Eastern Pacific molluscan provinces and latitudinal diversity gradient: no evidence for “Rapoport's Rule.” Proceedings of the National Academy of Sciences USA 91:88718874.Google Scholar
Roy, K.Jablonski, D.Valentine, J. W. 1995. Thermally anomalous assemblages revisited: patterns in the extraprovincial latitudinal range shifts of Pleistocene marine mollusks. Geology 23:10711074.Google Scholar
Roy, K.Valentine, J. W.Jablonski, D.Kidwell, S. M. 1996. Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends in Ecology and Evolution 11:458463.Google Scholar
Roy, K.Jablonski, D.Valentine, J. W.Rosenberg, G. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.Google Scholar
Roy, K.Jablonski, D.Valentine, J. W. 2000. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proceedings of the Royal Society of London B 267:293299.Google Scholar
Russell, M. P.Lindberg, D. R. 1988. Real and random patterns associated with molluscan spatial and temporal distributions. Paleobiology 14:322330.Google Scholar
Sagarin, R. D.Barry, J. P.Gilman, S. E.Baxter, C. H. 1999. Climate-related change in an intertidal community over short and long time scales. Ecological Monographs 69:465490.Google Scholar
Salt, G. W. 1984. Ecology and evolutionary biology: a round table on research. University of Chicago Press, Chicago.Google Scholar
Sutherst, R. W.Maywald, G. F.Skarrat, D. B. 1995. Predicting insect distributions in a changed climate. Pp. 6093in Harrington and Stork 1995.Google Scholar
Taper, M. L.Böhning-Gaese, K.Brown, J. H. 1995. Individualistic responses of bird species to environmental change. Oecologia 101:478486.Google Scholar
Valentine, J. W. 1955. Upwelling and thermally anomalous Pacific Coast Pleistocene molluscan faunas. American Journal of Science 253:462474.Google Scholar
Valentine, J. W. 1957. Late Pleistocene faunas from the northwestern coast of Baja California, Mexico. Transactions of the San Diego Society of Natural History 12:289308.Google Scholar
Valentine, J. W. 1966. Numerical analysis of marine molluscan ranges on the extratropical northeastern Pacific shelf. Limnology and Oceanography 11:198211.Google Scholar
Valentine, J. W. 1974. Evolutionary paleoecology of the marine biosphere. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
Valentine, J. W. 1980. Camalu: a Pleistocene terrace fauna from Baja California. Journal of Paleontology 54:13101318.Google Scholar
Valentine, J. W. 1989. How good was the fossil record? Clues from the Californian Pleistocene. Paleobiology 15:8394.Google Scholar
Valentine, J. W.Jablonski, D. 1993. Fossil communities: compositional variation at many timescales. Pp. 341348in Ricklefs, R. E.Schluter, D., eds. Species diversity in ecological communities: historical and geographic perspectives. University of Chicago Press, Chicago.Google Scholar
Valentine, J. W.Meade, R. F. 1961. Californian Pleistocene paleotemperatures. University of California Publications in Geological Sciences 40:146.Google Scholar
Vedder, J. G.Norris, R. M. 1963. Geology of San Nicolas Island California. U.S. Geological Survey Professional Paper 369:162.Google Scholar
Walter, G. H.Patterson, H. E. H. 1994. The implications of palaeontological evidence for theories of ecological communities and species richness. Australian Journal of Ecology 19:241250.Google Scholar
Westman, W. E.Malanson, G. P. 1992. Effects of climate change on Mediterranean-type ecosystems in California and Baja California. Pp. 105123in Peters, R. L.Lovejoy, T., eds. Global warming and biological diversity. Yale University Press, New Haven, Conn.Google Scholar