Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T02:03:34.512Z Has data issue: false hasContentIssue false

An ecological theory for the origin of Homo

Published online by Cambridge University Press:  08 February 2016

Steven M. Stanley*
Affiliation:
Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218

Abstract

The genus Homo evolved its pronounced encephalization through postnatal extension of the high rate of brain growth that characterizes all primates in utero. Linked to this extension was delayed development, which represented an enormous ecological sacrifice because it produced the longest postnatal interval of physical helplessness in the Mammalia and forced mothers to carry infants.

Graphs relating brain growth to body growth indicate a pongid pattern of development for gracile australopithecines, implying that infants could cling to mothers whose forelimbs were occupied with climbing. Also present were several postcranial traits that would have made the adults more adept climbers than modern humans. Habitual use of these inherited traits is suggested by the fact that evolution failed to eliminate certain ones, such as short legs and long pedal phalanges, that impeded terrestrial locomotion. Moreover, the intensity of predation by large, swift, social carnivores must have compelled australopithecines to use trees as refuges, in the manner of chimpanzees and baboons; australopithecines probably also gathered some of their food in trees. Gracile australopithecines failed to expand their brain size, experiencing general evolutionary stasis for more than 1.5 m.y. I propose that this stability resulted from these animals' semiarboreal mode of life: First, their postcranial morphology remained compromised by selection pressures to maintain both terrestrial and arboreal adaptations. Second, by requiring that neonates be mature enough to cling to mothers, obligate arboreal activity precluded encephalization of the kind that characterizes Homo; this evolutionary constraint has previously been overlooked.

In contrast to australopithecines, early Homo approached H. erectus in pelvic configuration and brain size. A new brain-body growth curve for early Homo indicates extension of the fetal pattern well into the postnatal interval, implying that neonates were highly immature so that adults had to be fully terrestrial. Homo evolved shortly after the onset of the modern ice age about 2.5 Ma. Fossil pollen and carbon isotopes in paleosols record a contraction of forests in Africa at this time. I propose that this represented a crisis that led to the evolution of Homo by compelling some australopithecine populations to adopt a fully terrestrial existence. Although ecologically difficult, this behavioral restriction finally made possible encephalization through the evolution of delayed development. During the ecological crisis, a large brain evolved in at least one population of gracile australopithecines. An advanced tool industry and cunning behavior were of such great adaptive value for avoiding predators and expanding food resources on the ground that selection for encephalization soon overrode the problems imposed by helpless infants.

The fossil record of antelopes and micromammals provides a test of the idea that environmental forcing opened the way for the evolution of Homo: both of these groups experienced heavy extinction of forest-adapted species about 2.5–2.4 Ma and a rapid proliferation of species adapted to unforested habitats. The transformation of the hominid clade during Plio-Pleistocene time did not follow a simple pattern. Homo may have arisen either by anagenetic transformation of a “bottlenecked” species or by speciation, and it may not have evolved immediately with the onset of climatic change. Furthermore, just as a few forest-adapted antelope species survived the biotic crisis, a small-brained gracile taxon with arboreal adaptations may have persisted to the start of the Pleistocene. Robust australopithecines survived into the Pleistocene, perhaps because a broad vegetarian diet reduced their need to migrate frequently between home bases. With their extinction in mid-Pleistocene time, about the time that savannahs became widespread, only Homo remained.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aiello, L., and Dean, C. 1990. An introduction to human evolutionary anatomy. Academic Press, London.Google Scholar
Akersten, W. A. 1985. Canine function in Smilodan (Mammalia; Felidae; Machairodontinae). Contributions to Science, Los Angeles 356:122.Google Scholar
Bakwin, H., and Bakwin, R. M. 1934. Body build in infants. V. Anthropometry in the newborn. Human Biology 6:612626.Google Scholar
Bertram, B.C.R. 1979. Serengeti predators and their social systems. Pp. 221248in Sinclair, A.R.E. and Norton-Griffiths, M., eds. Serengeti: dynamics of an ecosystem. University of Chicago Press, Chicago.Google Scholar
Beynon, A. D. 1986. Tooth growth and structure in living and fossil hominoids. Pp. 2330in Cruwys, E. and Foley, R. A., eds. Teeth and anthropology. B.A.R. International Series 291, Oxford.Google Scholar
Bolk, L. 1926. Das Problem der Menschwerdung. Gustav Fischer, Jena.Google Scholar
Bonnefille, R. 1976. Implications of pollen assemblage from the Koobi Fora Formation, East Rudolf, Kenya. Nature (London) 264:403407.CrossRefGoogle Scholar
Bonnefille, R. 1983. Evidence for a cooler and drier climate in the Ethiopian uplands towards 2.5 Myr ago. Nature (London) 303:487491.CrossRefGoogle Scholar
Brain, C. K. 1981a. The evolution of man in Africa: was it a consequence of Cainozoic cooling? Geological Society of South Africa, Annexure 84:119.Google Scholar
Brain, C. K. 1981b. The hunters or the hunted? An introduction to African cave taphonomy. University of Chicago Press, Chicago.Google Scholar
Bromage, T. G., and Dean, M. C. 1985. Re-evaluation of the age at death of immature fossil hominids. Nature (London) 317:525527.CrossRefGoogle ScholarPubMed
Brown, F., Harris, J., Leakey, R., and Walker, A. 1985. Early Homo erectus skeleton from west Lake Turkana, Kenya. Nature (London) 316:788792.CrossRefGoogle ScholarPubMed
Brown, L. 1965. Africa: a natural history. Random House, New York.Google Scholar
Campbell, B. G. 1982. Humankind emerging, 3d ed.Aldine, Chicago.Google Scholar
Cartmill, M. 1974. Pads and claws in arboreal locomotion. Pp. 4583in Jenkins, F. A., ed. Primate locomotion. Academic Press, New York.Google Scholar
Cartmill, M., and Milton, K. 1977. The lorisiform wrist joint and the evolution of “brachiating” adaptations in the Hominoidea. American Journal of Physical Anthropology 47:249272.CrossRefGoogle ScholarPubMed
Cerling, T. E. 1992. Development of grasslands and savannahs in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology 97:241247.CrossRefGoogle Scholar
Ciochon, R. L., and Corruccini, R. S. 1976. Shoulder joint of Sterkfontein Australopithecus. South African Journal of Science 72:8082.Google Scholar
Conrad, G. 1968. Evolution continental post-Hercynienne du Sahara Algerien. CNRS, Paris.Google Scholar
Conroy, G. C., and Vannier, M. W. 1987. Dental development of the Taung skull from computerized tomography. Nature (London) 329:625627.CrossRefGoogle ScholarPubMed
Coque, R. 1962. La Tunisie présaharienne. Etude géomorphologique. Armand Colin, Paris.Google Scholar
Count, E. W. 1947. Brain and body weight in man: their antecedents in growth and evolution. Annals of the New York Academy of Sciences 46:9931122.CrossRefGoogle Scholar
Dart, R. A. 1925. Australopithecus africanus: the ape-man of South Africa. Nature (London) 115:195199.CrossRefGoogle Scholar
Dart, R. A. 1949. The first pelvic bones of Australopithecus prometheus: preliminary note. American Journal of Physical Anthropology 7:255257.CrossRefGoogle ScholarPubMed
Darwin, C. 1872. The descent of man and selection in relation to sex. Appleton, New York.CrossRefGoogle Scholar
Day, M. H., and Wickens, E. H. 1980. Laetoli Pliocene hominid footprints and bipedalism. Nature (London) 286:385387.CrossRefGoogle Scholar
Deacon, T. W. 1988. Human brain evolution: II. Embryology and brain allometry. Pp. 383415in Jerison, H. and Jerison, I., eds. Intelligence and evolutionary biology. Springer, Berlin.CrossRefGoogle Scholar
Deacon, T. W. 1990. Problems of ontogeny and phylogeny in brainsize evolution. International Journal of Primatology 11:237282.CrossRefGoogle Scholar
Dean, M. C., and Wood, B. A. 1981. Developing pongid dentition and its use for aging individual crania in comparative cross-sectional growth studies. Folia Primatologia 36:111127.CrossRefGoogle ScholarPubMed
DeBeer, G. 1959. Paedomorphosis. Proceedings of the International Congress of Zoology, London 15:927950.Google Scholar
Delson, E., ed. 1985. Ancestors: the hard evidence. Alan R. Liss, New York.Google Scholar
Delson, E., ed. 1988. Chronology of South African australopith site units. Pp. 317324in Grine, 1988.Google Scholar
Devore, I., and Washburn, S. L. 1983. Baboon ecology and human evolution. Pp. 335367in Howell, F. C. and Bourlière, F., eds. African ecology and human evolution. Aldine, Chicago.Google Scholar
East, R. 1984. Rainfall, soil nutrient status and biomass of large African savannah mammals. African Journal of Ecology 22:245270.CrossRefGoogle Scholar
Falk, D. 1990. Brain evolution in Homo: the “radiator” theory. Behavioral & Brain Sciences 13:333381.CrossRefGoogle Scholar
Feibel, C. S., Brown, F. H., and McDougal, I. 1989. Stratigraphic context of fossil hominids from the Omo Group deposits: Northern Turkana Basin, Kenya and Ethiopia. American Journal of Physical Anthropology 78:595622.CrossRefGoogle ScholarPubMed
Feldesman, M. R., and Lundy, J. K. 1988. Stature estimates for some African Plio-Pleistocene fossil hominids. Journal of Human Evolution 17:583596.CrossRefGoogle Scholar
Fleagle, J. G., Stern, J. T., Jungers, W. L., Susman, R. L., Vangor, A. K., and Wells, J. P. 1981. Climbing: a biomechanical link with brachiation and bipedalism. Symposium of the Zoological Society of London 48:359375.Google Scholar
Gjukié, J. 1955. Ein Beitrag zum Problem der Korrelation zwischen Hirngewicht und Körpergewicht. Zeitschrift fur Morphologie und Anthropologie 47:4357.Google Scholar
Goodall, J. 1967. Mother-offspring relationships in free-ranging chimpanzees. Pp. 287346in Morris, D., ed. Primate ethology. Weidenfeld and Nicolson, London.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Harvard University Press, Cambridge, Mass.Google Scholar
Grine, F. E. 1981. Trophic differences between “gracile” and “robust” australopithecines: a scanning electron microscope analysis of occlusal events. South African Journal of Science 77:203230.Google Scholar
Grine, F. E. 1986. Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. Journal of Human Evolution 15:783822.CrossRefGoogle Scholar
Grine, F. E. ed. 1988. Evolutionary history of the “robust” australopithecines. Aldine de Gruyter, New York.Google Scholar
Haeckel, E. 1868. Naturliche Schopfungsgeschichte. Georg Reimer, Berlin.Google Scholar
Harris, J.W.K. 1983. Cultural beginnings: Plio-Pleistocene archaeological occurrences from the Afar, Ethiopia. African Archaeological Review 1:331.CrossRefGoogle Scholar
Hendey, Q. B. 1974. The Late Cenozoic Carnivora of the southwestern Cape Province. Annals of the South African Museum 63:1369.Google Scholar
Hill, A., Ward, S., Deino, A., Curtiss, G., and Drake, R. 1992. Earliest Homo. Nature (London) 355:719722.CrossRefGoogle ScholarPubMed
Hockett, C. F., and Ascher, R. 1964. The human revolution. Current Anthropology 5:135168.CrossRefGoogle Scholar
Holloway, R. L. 1970. Neural parameters, hunting, and the evolution of the human brain. Advances in Primatology 1:299310.Google Scholar
Holloway, R. L. 1978. Problems of brain endocast interpretation and African hominid evolution. Pp. 379401in Jolly, C. J., ed. Early hominids in Africa. St. Martin's Press, New York.Google Scholar
Holloway, R. L. 1983. Human paleontological evidence relevant to language behavior. Human Neurobiology 2:105114.Google ScholarPubMed
Holt, A. B., Cheek, D. B., Mellits, E. D., and Hill, D. E. 1975. Brain size and the relation of the primate to the nonprimate. Pp. 2344in Cheek, D. B., ed. Fetal and postnatal cellular growth: hormones and nutrition. Wiley, New York.Google Scholar
Howell, F. C., Haesarts, P., and de Heinzelin, J. 1987. Depositional environments, archeological occurrences and homonids from members E and F of the Shungura Formation (Omo basin, Ethiopia). Journal of Human Evolution 16:665700.CrossRefGoogle Scholar
Illingworth, R. S. 1983. The development of the infant and young child. Churchill Livingstone, Edinburgh.Google Scholar
Johanson, D. C., Masao, F. T., Eck, G. G., White, T. D., Walter, R. C., Kimbel, W. H., Asfaw, B., Manega, P., Ndessokia, P., and Suwa, G. 1987. New partial skeleton of Homo habilis from Oldovia Gorge, Tanzania. Nature (London) 327:205209.CrossRefGoogle ScholarPubMed
Jordaan, H.V.F. 1976. Newborn/adult brain ratios in hominid evolution. American Journal of Physical Anthropology 44:271278.CrossRefGoogle ScholarPubMed
Jungers, W. L. 1982. Lucy's limbs: skeletal allometry and locomotion in Australopithecus afarensis. Nature (London) 297:676678.CrossRefGoogle Scholar
Jungers, W. L. 1988. New estimates of body size in australopithecines. Pp. 115125in Grine, 1988.Google Scholar
Jungers, W. L., and Stern, J. T. 1983. Body proportions, skeletal allometry and locomotion in the Hadar hominids: a reply to Wolpoff. Journal of Human Evolution 12:673684.CrossRefGoogle Scholar
Kay, R. F. 1985. Dental evidence for the diet of Australopithecus. Annual Reviews of Physical Anthropology 14:315341.CrossRefGoogle Scholar
Kay, R. F., and Grine, F. E. 1988. Tooth morphology, wear and diet in Australopithecus and Paranthropus from Southern Africa. Pp. 427447in Grine, 1988.Google Scholar
Keeling, M. E., and Riddle, K. E. 1975. Reproductive, gestational, and newborn physiology of the chimpanzee. Laboratory Animal Science 25:822828.Google ScholarPubMed
Kimura, T., Okada, M., and Ishida, H. 1979. Kinesiological characteristics of primate walking: its significance in human walking. Pp. 297311in Morbeck, M. E., Preuschoft, H., and Gomberg, N., eds. Environment, behavior and morphology: dynamic interactions in primates. G. Fischer, New York.Google Scholar
Korey, K. A. 1990. Deconstructing reconstruction: the OH 62 humerofemoral index. American Journal of Physical Anthropology 83:2533.CrossRefGoogle ScholarPubMed
Krogman, W. G. 1972. Child growth. University of Michigan Press, Ann Arbor.Google Scholar
Kruuk, H. 1972. The spotted hyena. University of Chicago Press, Chicago.Google Scholar
Laird, A. K. 1967. Evolution of the human growth curve. Growth 31:345355.Google ScholarPubMed
Langdon, J. H. 1985. Fossils and the origin of bipedalism. Journal of Human Evolution 14:615635.CrossRefGoogle Scholar
Latimer, B. M. 1983. The anterior foot skeleton of Australopithecus afarensis. American Journal of Physical Anthropology 60:217. [Abstract.]Google Scholar
Latimer, B., and Lovejoy, C. O. 1990a. Hallucal tarsometatarsal joint in Australopithecus afarensis. American Journal of Physical Anthropology 82:125133.CrossRefGoogle ScholarPubMed
Latimer, B., and Lovejoy, C. O. 1990b. Metatarsophalangeal joints of Australopithecus afarensis. American Journal of Physical Anthropology 83:1323.CrossRefGoogle ScholarPubMed
Latimer, B., Ohman, J. C., and Lovejoy, C. O. 1987. Talocrural joint in African hominoids: implications for Australopithecus afarensis. American Journal of Physical Anthropology 74:155175.CrossRefGoogle ScholarPubMed
Leakey, M. D., and Hay, R. L. 1979. Pliocene footprints in the Laetolil beds at Laetoli, northern Tanzania. Nature (London) 278:317323.CrossRefGoogle Scholar
Leakey, R.E.F., and Walker, A. 1989. Early Homo erectus from west Lake Turkana, Kenya. Pp. 209215in Giacobini, G., ed. Hominidae. Jaca, Milan.Google Scholar
Leakey, R.E.F., Walker, A., Ward, C. V., and Grausa, H. M. 1989. A partial skeleton of a gracile hominid from the upper Burgi member of the Koobi Fora Formation, east Lake Turkana, Kenya. Pp. 167173in Giacobini, G., ed. Hominidae. Jaca, Milan.Google Scholar
Leutenegger, W. 1982. Encephalization and obstetrics in primates with particular reference to human evolution. Pp. 8595in Armstrong, E. and Falk, D., eds. Primate brain evolution: methods and concepts. Plenum Press, New York.CrossRefGoogle Scholar
Lieberman, D. E., Pilbeam, D. R., and Wood, B. A. 1988. A probabilistic approach to the problem of sexual dimorphism in Homo habilis: a comparison of KNM-ER 1470 and KNM-ER 1813. Journal of Human Evolution 17:503511.CrossRefGoogle Scholar
Lovejoy, C. O. 1981. The origin of man. Science (Washington, D.C.) 211:341350.CrossRefGoogle ScholarPubMed
Lovejoy, C. O. 1988. Evolution of human walking. Scientific American 259:118125.CrossRefGoogle ScholarPubMed
Lucas, P. W., and Corlett, R. T. 1985. Plio-Pleistocene hominid diets: an approach combining masticatory and ecological analysis. Journal of Human Evolution 14:187202.CrossRefGoogle Scholar
Maple, T. L. 1980. Orang-utan behavior. Van Nostrand Reinhold, New York.Google Scholar
Marean, C. W. 1989. Saber-tooth cats and their relevance for early hominid diet and evolution. Journal of Human Evolution 18:559582.CrossRefGoogle Scholar
Martin, R. D. 1983. Human brain evolution in an ecological context. Fifty-second James Arthur Lecture on the Evolution of the Human Brain, 1982. American Museum of Natural History, New York.Google Scholar
Marzke, M. W. 1983. Joint functions and grips of the Australopithecus afarensis with special reference to the region of the capitate. Journal of Human Evolution 12:197211.CrossRefGoogle Scholar
Mayr, E. 1958. Behavior and systematics. Pp. 341362in Roe, A. and Simpson, G. G., eds. Behavior and evolution. Yale University Press, New Haven, Conn.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge, Mass.CrossRefGoogle Scholar
McHenry, H. M. 1975. Biomechanical interpretation of the early hominid hip. Journal of Human Evolution 4:343355.CrossRefGoogle Scholar
McHenry, H. M. 1983. The capitate of Australopithecus afarensis and A. africanus. American Journal of Physical Anthropology 62:187198.CrossRefGoogle ScholarPubMed
McHenry, H. M. 1986. The first bipeds: a comparison of the A. afarensis and A. africanus postcranium and implications for the evolution of bipedalism. Journal of Human Evolution 15:177191.CrossRefGoogle Scholar
McHenry, H. M. 1988. New estimates of body weight in early hominids and their significance to encephalization and megadontia in “robust” australopithecines. Pp. 133148in Grine, 1988.Google Scholar
McHenry, H. M. 1991. Sexual dimorphism in Australopithecus afarensis. Journal of Human Evolution 20:2132.CrossRefGoogle Scholar
Mühlman, L. 1957. Die Abhängigkeit des Hirngewichtes von Körperwicht, Körperlange und Körperbautypen. Ph.D. dissertation, University of Munich.Google Scholar
Oxnard, C. E. 1968. A note on the fragmentary Sterkfontein scapula. American Journal of Physical Anthropology 28:213217.CrossRefGoogle ScholarPubMed
Pagel, M. D., and Harvey, P. H. 1988. How mammals produce large-brained offspring. Evolution 42:948957.CrossRefGoogle ScholarPubMed
Pilbeam, D. 1989. Human fossil history and evolutionary paradigms. Pp. 117138in Hecht, M. K., ed. Evolutionary biology at the crossroads. Queens College Press, New York.Google Scholar
Prentice, M. L., and Denton, G. H. 1988. Deep-sea oxygen isotope record, the global ice sheet system, and hominid evolution. Pp. 383403in Grine, 1988.Google Scholar
Prost, J. H. 1980. Origin of bipedalism. American Journal of Physical Anthropology 52:175189.CrossRefGoogle ScholarPubMed
Rodman, P. S., and McHenry, H. M. 1980. Bioenergetics and the origin of homonid bipedalism. American Journal of Physical Anthropology 52:103106.CrossRefGoogle Scholar
Rose, M. D. 1984a. A hominine hip bone, KNM-ER 3228, from east Lake Turkana, Kenya. American Journal of Physical Anthropology 63:371378.CrossRefGoogle ScholarPubMed
Rose, M. D. 1984b. Food acquisition and the evolution of positional behavior: The case of bipedalism. Pp. 509524in Chivers, D. J., Wood, B. A., and Bilsborough, A., eds. Food acquisition and processing in primates. Plenum, New York.CrossRefGoogle Scholar
Ruff, C. 1988. Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling. Journal of Human Evolution 17:687714.CrossRefGoogle Scholar
Ruff, C., and Walker, A. 1991. Body size of KNM-WT 15000. American Journal of Physical Anthropology 12(Suppl.):155.Google Scholar
Sacher, G. A. 1959. Relation of life-span to brain weight and body weight in mammals. CIBA Foundation Colloquia on Aging 5:115133.Google Scholar
Schaller, G. B. 1963. The mountain gorilla: ecology and behavior. University of Chicago Press, Chicago.Google Scholar
Schaller, G. B. 1972. The Serengeti lion. University of Chicago Press, Chicago.Google Scholar
Schultz, A. H. 1935. Eruption and decay of the permanent teeth in primates. American Journal of Physical Anthropology 19:489581.CrossRefGoogle Scholar
Schultz, A. H. 1941. Growth and development of the orang-utan. Carnegie Institution of Washington Publication 525. Contributions to Embryology 29:57111.Google Scholar
Servant, M., and Servant-Vildary, S. 1980. L'environment quaternaire du bassin du Tchad. Pp. 133162in Williams, M.A.J. and Faure, H., eds. The Sahara and the Nile. Balkema, Rotterdam.Google Scholar
Shackelton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddleston, P., Kennett, J. B., Kaltenback, A. J., Krumsiek, K.A.O., Morton, A. C., Murray, J. W., and Westberg-Smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North American region. Nature (London) 270:620623.CrossRefGoogle Scholar
Shea, B. T. 1989. Heterochrony in human evolution: the case for neoteny reconsidered. Yearbook of Physical Anthropology 32:69101.CrossRefGoogle Scholar
Shipman, P., and Harris, J. M. 1988. Habitat preference and paleoecology of Australopithecus boisei in Eastern Africa. Pp. 343381in Grine, 1988.Google Scholar
Shipman, P., and Walker, A. 1989. The costs of becoming a predator. Journal of Human Evolution 18:373392.CrossRefGoogle Scholar
Simons, E. L. 1989. Human origins. Science (Washington, D.C.) 245:13431350.CrossRefGoogle ScholarPubMed
Simpson, S. W., Lovejoy, C. O., and Meindl, R. S. 1990. Hominoid dental maturation. Journal of Human Evolution 19:285297.CrossRefGoogle Scholar
Siwe, St. A. 1931. Das nervensystem. Handbuch der Anatomie des Kindes 2:590728.Google Scholar
Skeat, W. W., and Blagden, C. O. 1906. Pagan races of the Malay Peninsula. Macmillan, New York.Google Scholar
Smith, B. H. 1986. Dental development in Australopithecus and early Homo. Nature (London) 323:327330.CrossRefGoogle Scholar
Stanley, S. M. 1989. Plio-Pleistocene extinction and its aftermath: the origins of modern mollusks and mammals, including humans. Geological Society of America Abstracts with Programs 21:A32.Google Scholar
Stern, J. T. 1971. Functional myology of the hip and thigh of cebid monkeys and its implications for the evolution of erect posture. Bibliotheca Primatologia 14:1318.Google Scholar
Stern, J. T., and Susman, R. L. 1983. The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology 60:279317.CrossRefGoogle ScholarPubMed
Stringer, C. B. 1986. The credibility of Homo habilis. Pp. 266294in Wood, B. A., Martin, L., and Andrews, P., eds. Major topics in primate and human evolution. Cambridge University Press, Cambridge, Mass.Google Scholar
Suc, J.-P. 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature (London) 307:429432.CrossRefGoogle Scholar
Susman, R. L. 1988. Hand of Paranthropus robustus from Member 1, Swartkrans: fossil evidence for tool behavior. Science (Washington, D.C.) 240:781784.CrossRefGoogle ScholarPubMed
Susman, R. L., and Brain, T. M. 1988. New first metatarsal (SKX 5017) from Swartkrans and the gait of Paranthropus robustus. American Journal of Physical Anthropology 77:715.CrossRefGoogle ScholarPubMed
Susman, R. L., Stern, J. T., and Jungers, W. L. 1984. Arboreality and bipedality in the Hadar hominids. Folia Primatologica 43:113156.CrossRefGoogle ScholarPubMed
Susman, R. L., Stern, J. T., and Jungers, W. L. 1985. Locomotor adaptations in the Hadar hominids. Pp. 184192in Delson, 1985.Google Scholar
Tague, R. G. 1989. Variation in pelvic size between males and females. American Journal of Physical Anthropology 80:5971.CrossRefGoogle ScholarPubMed
Tague, R. G., and Lovejoy, C. O. 1986. The obstetric pelvis of A. L. 288-1 (Lucy). Journal of Human Evolution 15:237255.CrossRefGoogle Scholar
Turner, A. 1985. Extinction, speciation and dispersal in African large carnivores, from the late Miocene to Recent. South African Journal of Science 81:256257.Google Scholar
Tuttle, R. H. 1981. Evolution of hominid bipedalism and prehensile capabilities. Philosophical Transactions, Royal Society of London B292:8994.Google Scholar
Tuttle, R. H. 1987. Kinesiological inferences and evolutionary implications from Laetoli bipedal trails G-1, G-2/3, and A. Pp. 503523in Leakey, M. D. and Harris, J. M., eds. Oxford University Press, Oxford.Google Scholar
Van der Broek, A.J.P. 1940. Das Skelett einer weiblichen Efé-Pygmäe. Zeitschrift für Morphologie und Anthropologie 38:121169.Google Scholar
Vangor, A. K. 1979. Electromyography of gait in nonhuman primates and its significance for the evolution of bipedality. Ph.D. dissertation. State University of New York, Stony Brook, N.Y.Google Scholar
Van Valkenburgh, B. 1985. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology 11:406428.CrossRefGoogle Scholar
Van Valkenburgh, B., and Ruff, C. B. 1987. Canine tooth strength and killing behaviour in large carnivores. Journal Zoological Society of London 212:379397.CrossRefGoogle Scholar
Vrba, E. S. 1974. Chronological and ecological implications of the fossil Bovidae at the Sterkfontein australopithecine site. Nature (London) 250:1923.CrossRefGoogle Scholar
Vrba, E. S. 1975. Some evidence of chronology and palaeoecology of Sterkfontein, Swartkrans and Kromdraai from the fossil Bovidae. Nature (London) 254:301304.CrossRefGoogle Scholar
Vrba, E. S. 1979. A new study of the scapula of Australopithecus africanus from Sterkfontein. American Journal of Physical Anthropology 51:117130.CrossRefGoogle Scholar
Vrba, E. S. 1980. The significance of bovid remains as indicators of environment and predation patterns. Pp. 247271in Behrensmeyer, A. K. and Hill, A. P., eds. Taphonomy and paleoecology. University of Chicago Press, Chicago.Google Scholar
Vrba, E. S. 1985a. African Bovidae: evolutionary events since the Miocene. South African Journal of Science 81:263266.Google Scholar
Vrba, E. S. 1985b. Ecological and adaptive changes associated with early hominid evolution. Pp. 6371in Delson, 1985.Google Scholar
Vrba, E. S. 1988. Late Pliocene climatic events and hominid evolution. Pp. 405426in Grine, 1988.Google Scholar
Vrba, E. S., Denton, G. H., and Prentice, M. L. 1989. Climatic influences on early hominid behavior. Ossa 14:127156.Google Scholar
Walker, A. 1981a. Diet and teeth: dietary hypotheses and human evolution. Philosophical Transactions, Royal Society of London B 282:5764.Google Scholar
Walker, A. 1981b. The Koobi Fora hominids and their bearing on the origins of the genus Homo. Pp. 193215in Sigmon, B. A. and Cybulski, J. S., eds. Homo erectus: papers in honour of Davidson Back. University of Toronto Press, Toronto.CrossRefGoogle Scholar
Walker, A., and Leakey, R.E.F. 1978. The hominids of East Turkana. Science (Washington, D.C.) 239:5466.Google ScholarPubMed
Wesselman, H. B. 1984. The Omo micromammals: systematics and palaeoecology of early man sites from Ethiopia. Contributions to Vertebrate Evolution 7:1219.Google Scholar
Wesselman, H. B. 1985. Fossil micromammals as indicators of climatic change aboaut 2.4 Myr ago in the Omo Valley, Ethiopia. South African Journal of Science 81:260261.Google Scholar
Wheeler, P. E. 1990. The significance of selective brain cooling in hominids. Journal of Human Evolution 19:321322.CrossRefGoogle Scholar
White, T. D. 1980. Evolutionary implications of Pliocene hominid footprints. Science (Washington, D.C.) 208:175208.CrossRefGoogle ScholarPubMed
White House Conference on Child Health and Protection. 1933. Growth and development of the child, Part II. Anatomy and physiology. Century, New York.Google Scholar
Williams, M.A.J. 1982. Quaternary environments in northern Africa. Pp. 1323in Williams, M.A.J. and Adamson, D. A., eds. A land between two Niles. Balkema, Rotterdam.Google Scholar
Wolpoff, M. H. 1983. Lucy's little legs. Journal of Human Evolution 12:443453.CrossRefGoogle Scholar
Wood, B. A. 1974. Olduvai Bed I post-cranial fossils: a reassessment. Journal of Human Evolution 3:373378.CrossRefGoogle Scholar
Wood, B. A. 1985. Early Homo in Kenya, and its systematic relationships. Pp. 206214in Delson, 1985.Google Scholar
Wood, B. A. 1992a. Old bones match old stones. Nature (London) 355:678.CrossRefGoogle ScholarPubMed
Wood, B. A. 1992b. Origin and evolution of the genus Homo. Nature (London) 355:783790.CrossRefGoogle ScholarPubMed
Wood-Jones, F. 1964. Arboreal man. Hafner, New York.Google Scholar
Zihlman, A. L. 1984. Body build and tissue composition in Panpaniscus and Pan troglodytes, with comparisons to other hominoids. Pp. 179200in Susman, R. S., ed. The pygmy chimpanzee. Plenum, New York.CrossRefGoogle Scholar