Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T13:22:54.410Z Has data issue: false hasContentIssue false

An Australian land mammal age biochronological scheme

Published online by Cambridge University Press:  08 April 2016

Dirk Megirian
Affiliation:
Museum of Central Australia, Alice Springs, Northern Territory 0871, Australia
Gavin J. Prideaux
Affiliation:
School of Biological Sciences, Flinders University, Bedford Park, South Australia 5042, Australia. E-mail: [email protected]
Peter F. Murray
Affiliation:
Museum of Central Australia, Alice Springs, Northern Territory 0871, Australia
Neil Smit
Affiliation:
Marine Biodiversity Group, Department of Natural Resources, Environment and the Arts, Casuarina, Northern Territory 0811, Australia

Abstract

Constrained seriation of a species-locality matrix of the Australian Cenozoic mammal record resolves a preliminary sixfold succession of land mammal ages apparently spanning the late Oligocene to the present. The applied conditions of local chronostratigraphic succession and inferences of relative stage-of-evolution biochronology lead to the expression of a continental geological timescale consisting of, from the base, the Etadunnan, Wipajirian, Camfieldian, Waitean, Tirarian, and Naracoortean land mammal ages. Approximately 99% of the 360 fossil assemblages analyzed are classifiable using this method. Each is characterized by a diagnostic suite of species. An interval of age magnitude may eventually be shown to lie between the Camfieldian and Waitean, but is currently insufficiently represented by fossils to diagnose. Development of a land mammal age framework marks a progressive step in Australian vertebrate biochronology, previously expressed only in terms of local faunas. Overall, however, the record remains poorly calibrated to the Standard Chronostratigraphic Scale. Codifying the empirical record as a land mammal age sequence provides an objective basis for expressing faunal succession without resort to standard chronostratigraphic terms with the attendant (and hitherto commonly taken) risks of miscorrelating poorly dated Australian events to well-dated global events.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1994. Appearance event ordination: a new biochronologic method. Paleobiology 20:191207.Google Scholar
Arena, D. A. 2004. The geological history and development of the terrain at the Riversleigh World Heritage area, during the middle Tertiary. Unpublished Ph.D. dissertation, University of New South Wales, Sydney.Google Scholar
Ayliffe, L. K., Prideaux, G. J., Bird, M. I., Grün, R., Roberts, R. G., Gully, G. A., Jones, R., Fifield, L. K., and Cresswell, R. G. 2008. Age constraints on Pleistocene megafauna at Tight Entrance Cave in southwestern Australia. Quaternary Science Reviews 27:17841788.Google Scholar
Black, K. 1997. A new species of Palorchestidae (Marsupialia) from the late Middle to early late Miocene Encore Local Fauna, Riversleigh, northwestern Queensland. Memoirs of the Queensland Museum 41:181185.Google Scholar
Brower, J. C., and Kile, K. M. 1988. Sedation of an original data matrix as applied to palaeoecology. Lethaia 21:7993.Google Scholar
Dawson, L. 1985. Marsupial fossils from Wellington Caves, New South Wales; the historic and scientific significance of the collections in the Australia Museum, Sydney. Records of the Australian Museum 37:5569.CrossRefGoogle Scholar
Dawson, L., Muirhead, J., and Wroe, S. 1999. The Big Sink Local Fauna: a lower Pliocene mammalian fauna from the Wellington Caves complex, Wellington, New South Wales. Records of the Western Australian Museum Supplement 57:265290.Google Scholar
Godthelp, H., Archer, M., Cifelli, R., Hand, S. J., and Gilkeson, C. F. 1992. Earliest known Australian Tertiary mammal fauna. Nature 356:514516.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. 2005. A Geological Timescale 2004. Cambridge University Press, Cambridge.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4:19, http://palaeo-electronica.org/2001_1/past/issuel_01.htm Google Scholar
Kear, B. P. 2002. Phylogenetic implications of macropodid (Marsupialia: Macropodoidea) postcranial remains from Miocene deposits of Riversleigh, northwestern Queensland. Alcheringa 26:299318.Google Scholar
Kirkham, Z. 2004. Cranial description of the primitive macropodid, Rhizosthenurus flanneryi, and its phylogeny based on cranial and postcranial characters. , University of New South Wales, Sydney.Google Scholar
Lindsay, E. H. 2003. Chronostratigraphy, biochronology, datum events, Land Mammal Ages, stage of evolution, and appearance event ordination. Bulletin of the American Museum of Natural History 279:212230.Google Scholar
Lundelius, E. L., and Turnbull, W. D. 1989. The mammalian fauna of Madura Cave, Western Australia. Part VII: Macropodidae: Sthenurinae, Macropodinae, with a review of the marsupial portion of the fauna. Fieldiana, Geology, new series 17:171.Google Scholar
Mackness, B. S., and Godthelp, H. 2001. The use of Diprotodon as a biostratigraphic marker of the Pleistocene. Transactions of the Royal Society of South Australia 125:155156.Google Scholar
Macphail, M. K. 1996. A habitat for the enigmatic Wynyardia bassiana Spencer, 1901, Australia's first described Tertiary land mammal? Alcheringa 20:227243.Google Scholar
Megirian, D. 1992. Interpretation of the Miocene Carl Creek Limestone, northwestern Queensland. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 9:219248.Google Scholar
Megirian, D. 1994. Approaches to marsupial biochronology in Australia and New Guinea. Alcheringa 18:259274.Google Scholar
Megirian, D., Murray, P. F., Schwartz, L. R. S., and von der Borch, C. C. 2004. Late Oligocene Kangaroo Well Local Fauna from the Ulta Limestone (new name), and climate of the Miocene oscillation across central Australia. Australian Journal of Earth Sciences 51:701741.Google Scholar
Megirian, D., Murray, P. F., and Wells, R. T. 1996. The late Miocene Ongeva Local Fauna of central Australia. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 13:938.Google Scholar
Molnar, R. E., and Kurz, C. 1997. The distribution of Pleistocene vertebrates on the eastern Darling Downs, based on the Queensland Museum collections. Proceedings of the Linnean Society of New South Wales 166:107134.Google Scholar
Murray, P. F. 1990. Primitive marsupial tapirs (Propalorchestes novaculacephalus Murray and P. ponticulus sp. nov.) from the mid Miocene of north Australia (Marsupialia: Palorchestidae). The Beagle. Occasional Papers of the Northern Territory Museum of Arts and Sciences 3:195211.Google Scholar
Murray, P. F., and Megirian, D. 1990. Further observations on the morphology of Wakaleo vanderleueri (Marsupialia: Thylacoleonidae) from the mid-Miocene Camfield Beds, Northern Territory. The Beagle, Records of the Museums and Art Galleries of the Northern Territory 7:91102.Google Scholar
Murray, P. F. 2006. The Pwerte Marnte Marnte Local Fauna: a new vertebrate assemblage of presumed Oligocene age from the Northern Territory of Australia. Alcheringa Special Issue 1:211228.Google Scholar
Murray, P. F., Megirian, D., Rich, T. H., Plane, M. D., Black, K., Archer, M., Hand, S. J., and Vickers-Rich, P. 2000. Morphology, systematics, and evolution of the marsupial genus Neohelos Stirton (Diprotodontidae, Zygomaturinae). Museums and Art Galleries of the Northern Territory Research Report 6:1141.Google Scholar
Nanson, G. C., Price, D. M., Jones, B. G., Maroulis, J. C., Coleman, M., Bowman, H., Cohen, T. J., Pietsch, T. J., and Larsen, J. R. 2008. Alluvial evidence for major climate and flow regime changes during the middle and late Quaternary in eastern central Australia. Geomorphology 101:109129.Google Scholar
Puolamäki, K., Fortelius, M., and Mannila, H. 2006. Seriation in paleontological data using Markov Chain Monte Carlo methods. PLoS Computational Biology 2(2):e6.Google Scholar
Prideaux, G. J., Roberts, R. G., Megirian, D., Westaway, K. E., Hellstrom, J. C., and Olley, J. M. 2007. Mammalian responses to Pleistocene climate change in southeastern Australia. Geology 35:3336.CrossRefGoogle Scholar
Prideaux, G. J., and Warburton, N. M. 2010. An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (Macropodidae, Marsupialia). Zoological Journal of the Linnean Society 159:954987.Google Scholar
Rich, T. H. 1991. Monotremes, placentals, and marsupials: their record in Australia and its biases. Pp. 8931070 in Vickers-Rich, P., Monaghan, J. M., Baird, R. F., and Rich, T. H., eds. Vertebrate Palaeontology of Australasia. Pioneer Design Studio and Monash University, Melbourne.Google Scholar
Sigé, B., Archer, M., Crochet, J.-Y., Godthelp, H., Hand, S. J., and Beck, R. M. D. 2009. Chulpasia and Thylacotinga, late Paleocene-earliest Eocene trans-Antarctic Gondwanan bunodont marsupials. Geobios 42:813823.CrossRefGoogle Scholar
Stirton, R. A., and Woodburne, M. O., eds. 1967. Tertiary Diprotodontidae from Australia and New Guinea. Bureau of Mineral Resources, Geology and Geophysics, Australia, Bulletin 85:1160.Google Scholar
Stirton, R. A., Tedford, R. H., and Miller, A. H. 1961. Cenozoic stratigraphy and vertebrate paleontology of the Tirari Desert, South Australia. Records of the South Australian Museum 14:1961.Google Scholar
Stirton, R. A., Woodburne, M. O., and Plane, M. D. 1967. A phylogeny of the Tertiary Diprotodontidae and its significance in correlation. Bureau of Mineral Resources, Geology and Geophysics, Australia, Bulletin 85:149160.Google Scholar
Stirton, R. A., Tedford, R. H., and Woodburne, M. O. 1968. Australian Tertiary deposits containing terrestrial mammals. University of California Publications in Geological Sciences 77:130.Google Scholar
Tedford, R. H. 1970. Principles and practices of mammalian geochronology in North America. Pp. 666703 in Yochelson, E. L., ed. Proceedings of the North American Paleontological Convention, Vol. 1. Lawrence, Kans.Google Scholar
Tedford, R. H., and Wells, R. T. 1990. Pleistocene deposits and fossil vertebrates from the Dead Heart of Australia. Memoirs of the Queensland Museum 28:263284.Google Scholar
Tedford, R. H., Wells, R. T., and Barghoorn, S. F. 1992. Tirari Formation and contained faunas, Pliocene of the Lake Eyre Basin, South Australia. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 9:173194.Google Scholar
Travouillon, K. J., Archer, M., Hand, S. J., and Godthelp, H. 2006. Multivariate analyses of Cenozoic mammalian faunas from Riversleigh, north-western Queensland. Alcheringa Special Issue 1:323349.Google Scholar
van Dyck, S., and Strahan, R., eds. 2008. Mammals of Australia, 3d ed. Reed New Holland, Sydney.Google Scholar
Wallace, M. W., Dickinson, J. A., Moore, D. H., and Sandiford, M. 2005. Late Neogene strandlines of southern Victoria: a unique record of eustasy and tectonics in southeast Australia. Australian Journal of Earth Sciences 52:277295.Google Scholar
Wells, R.T., and Callen, R. A., eds. 1986. The Lake Eyre Basin: Cainozoic sediments, fossil vertebrates and plants, landforms, silcretes and climatic implications. Australasian Sedimentologists Group Field Guide Series No. 4. Geological Society of Australia, Sydney.Google Scholar
Whitelaw, M. J. 1991. Magnetic polarity stratigraphy of Pliocene and Pleistocene fossil vertebrate localities in southeastern Australia. Geological Society of America Bulletin 103:14931503.2.3.CO;2>CrossRefGoogle Scholar
Wilkinson, E. M. 1974. Techniques of data analysis–seriation theory. Archaeo-Physika 5:1142.Google Scholar
Wood, H. E., Chaney, R. W., Clark, J., Colbert, E. H., Jepsen, G. L., Reeside, J. B., and Stock, C. 1941. Nomenclature and correlation of the North American continental Tertiary. Bulletin of the Geological Society of America 52:148.CrossRefGoogle Scholar
Woodburne, M. O., ed. 2004. Late Cretaceous and Cenozoic mammals of North America: biostratigraphy and geochronology. Columbia University Press, New York.CrossRefGoogle Scholar
Woodburne, M. O., Tedford, R. H., Archer, M., Turnbull, W. D., Plane, M. D., and Lundelius, E. L. 1985. Biochronology of the continental mammal record of Australia and New Guinea. Special Publication of the South Australian Department of Mines and Energy 5:347363.Google Scholar
Woodburne, M. O., Tedford, R. H., and Archer, M. 1987. New Miocene ringtail possums (Marsupialia: Pseudocheiridae) from South Australia. Pp. 639679 in Archer, M., ed. Possums and opossums: studies in evolution. Surrey Beatty and the Royal Zoological Society of New South Wales, Sydney.Google Scholar
Woodburne, M. O., MacFadden, B. J., Case, J. A., Springer, M. S., Pledge, N. S., Power, J. D., Woodburne, J. M., and Springer, K. B. 1994. Land mammal biostratigraphy and magnetostratigraphy of the Etadunna Formation (Late Oligocene) of South Australia. Journal of Vertebrate Paleontology 13:483515.CrossRefGoogle Scholar
Supplementary material: File

Megirian et al. supplementary material

Supplementary Material

Download Megirian et al. supplementary material(File)
File 5.3 MB
Supplementary material: PDF

Megirian et al. supplementary material

Figures S12 and S13

Download Megirian et al. supplementary material(PDF)
PDF 5.3 MB