Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T12:46:21.624Z Has data issue: false hasContentIssue false

The ammonoid suture problem: relationships between shell and septum thickness and suture complexity in Paleozoic ammonoids

Published online by Cambridge University Press:  08 February 2016

W. Bruce Saunders*
Affiliation:
Department of Geology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010

Abstract

The most widely cited explanation for the functional enigma of sutural complexity in ammonoids, the Buckland hypothesis, has related septal folding and fluting to buttressing, providing increased shell strength against implosion, along with increased efficiency and decreased weight in shell and septum construction. In Paleozoic ammonoids, sutures ranged from simple to extremely complex. Comparison of shell and septum thickness (in polished sections) with sutural complexity in 49 Paleozoic ammonoid genera (Middle Devonian–Upper Permian) indicates that no significant reduction in either septum thickness or shell thickness accompanied a one-hundred-fold increase in sutural complexity. These preliminary results fail to support the Buckland hypothesis, suggest there may have been alternative incentives for increasing sutural complexity, and add support to views that septal fluting may have been related to buoyancy control.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bayer, U. 1975. Organic linings of the ammonite phragmocone and their role in fossilization process. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1975:1225.Google Scholar
Bond, P. N., and Saunders, W. B. 1989. Sublethal predation in Upper Mississippian ammonoids. Paleobiology 15:429437.CrossRefGoogle Scholar
Boyajian, G., and Lutz, T. 1992. Evolution of biological complexity and its relation to taxonomic longevity. Geology 20:983986.2.3.CO;2>CrossRefGoogle Scholar
Buckland, W. 1836. Geology and mineralogy considered with reference to natural theology. Vols. 1 & 2. Pickering, London. [The Bridgewater treatise on the power, wisdom, and goodness of God as manifested in the creation. Treatise VI.]CrossRefGoogle Scholar
Denton, E. J., and Gilpin-Brown, J. B. 1966. On the buoyancy of the Pearly Nautilus. Journal of the Marine Biological Association U.K. 46:723759.CrossRefGoogle Scholar
Doguzhaeva, L., and Mutvei, H. 1991. Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars. Palaeontolographica, A 218:1733.Google Scholar
Garcia-Ruiz, J. M., Checa, A., and Rivas, P. 1990. On the origin of ammonite sutures. Paleobiology 16:349354.CrossRefGoogle Scholar
Greenwald, L., and Ward, P. D. 1987. Buoyancy in Nautilus. Pp. 547560in Saunders, and Landman, 1987.Google Scholar
Henderson, R. 1984. A muscle attachment proposal for septal function in Mesozoic ammonites. Palaeontology 27:461468.Google Scholar
Hewitt, R. A. 1985. Numerical aspects of sutural ontogeny in the Ammonitina and Lytoceratina. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 170:273290.CrossRefGoogle Scholar
Hewitt, R. A., and Westermann, G. E. G. 1986. Function of complexly fluted septa in ammonoid shells. I. Mechanical principles and functional models. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 172:4769.CrossRefGoogle Scholar
Hewitt, R. A., and Westermann, G. E. G. 1987. Function of complexly fluted septa in ammonoid shells. II. Septal evolution and conclusions. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 174:135169.Google Scholar
Jacobs, D. 1990. Sutural patterns and shell stress in Baculites with implications for other cephalopod shell morphologies. Paleobiology 16:336348.CrossRefGoogle Scholar
Jacobs, D. K., and Landman, N. H. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26:101111.CrossRefGoogle Scholar
King, R. E., Dunbar, C. O., Cloud, P. E. Jr., and Miller, A. K. 1944. Geology and paleontology of the Permian area northwest of Las Delicias, southwestern Coahuila, Mexico. Geological Society of America Special Paper 52.CrossRefGoogle Scholar
Kulicki, C. 1979. The ammonite shell: its structure, development and biological significance. Palaeontologica Polonica 39:79142.Google Scholar
Kulicki, C. and Mutvei, H. 1988. Functional interpretation of ammonoid septa. Pp. 713718in Wiedmann, J. and Kullmann, J., eds. Cephalopods present and past. Schweizerbart'sche, Stuttgart.Google Scholar
Landman, N. H., and Waage, K. M. 1986. Shell abnormalities in scaphitid ammonites. Lethaia 19:211224.CrossRefGoogle Scholar
Miller, A. K., Furnish, W. M., and Schindewolf, O. H. 1957. Paleozoic Ammonoidea. Pp. L11L79in Moore, R. C., ed. Treatise on invertebrate paleonotology, Part L Mollusca 4. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Mutvei, H. 1967. On the microscopic shell structure in some Jurassic ammonoids. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 129:157166.Google Scholar
Mutvei, H. 1975. The mode of life in ammonoids. Paläontologische Zeitschrift 49:196201.CrossRefGoogle Scholar
Mutvei, H., and Reyment, R. 1973. Buoyancy control and siphuncle function in ammonoids. Palaeontology 16:623636.Google Scholar
Newell, N. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103124.CrossRefGoogle ScholarPubMed
Owen, R. 1832. Memoir on the Pearly Nautilus (Nautilus pompilius, Linn.), with illustrations of its external form and internal structure. Richard Taylor, London.CrossRefGoogle Scholar
Pfaff, E. 1911. Über Form und Bau der Ammonitenseptum und ihre Beziehungen zur Suturlinei. Jahresbericht Niedersachsen geologische Vereins Hannover 4:207223.Google Scholar
Ramsbottom, W. H. C. and Saunders, W. B. 1985. Evolution and evolutionary biostratigraphy of Carboniferous ammonoids. Journal of Paleontology 59:123139.Google Scholar
Raup, D. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Ruzhencev, V. E. 1960. Ammonoid classification problems. Journal of Paleontology 34:609619.Google Scholar
Ruzhencev, V. E., and Bogoslovskaya, M. F. 1978. Namurian time in ammonoid evolution: late Namurian ammonoids. Academy of Sciences, U.S.S.R. Paleontological Institute, Trudy, Vol. 167.Google Scholar
Saunders, W. B., and Landman, N. H., eds. 1987. Nautilus: the biology and paleobiology of a living fossil. Plenum, New York.CrossRefGoogle Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous ammonoids. Paleobiology 10:195228.CrossRefGoogle Scholar
Saunders, W. B., and Ward, P. D. 1987. Ecology and population characteristics of Nautilus. Pp. 137161in Saunders, and Landman, 1987.Google Scholar
Saunders, W. B., and Ward, P. D. 1994. Nautilus is not a model for the function and behavior of ammonoids. Lethaia 27:4748.CrossRefGoogle Scholar
Saunders, W. B., and Work, D. W.(in review)Shell morphology and suture complexity in Upper Carboniferous (Pennsylvanian) ammonoids. Paleobiology.Google Scholar
Saunders, W. B., Spinosa, C., and Davis, L. E. 1987. Predation on Nautilus. Pp. 201215in Saunders, and Landman, 1987.Google Scholar
Saunders, W. B., Bond, P. N., and Knight, R. L. 1991. Octopus predation on Nautilus: evidence from Papua New Guinea. Bulletin of Marine Science, Voss Cephalopod Symposium 49:280287.Google Scholar
Schindewolf, O. H. 1968. Studien zur Stammesgeschichte der Ammoniten. Abhandlungen, Akademie der Wissenschaften und der Literatur, Mainz, no. VII731901.Google Scholar
Seilacher, A. 1975. Mechanische Simulation und funktionelle Evolution des Ammoniten-Septums. Paläontologische Zeitschrift 49:268286.CrossRefGoogle Scholar
Spath, L. 1919. Notes on ammonites. Geological Magazine 56:2735.CrossRefGoogle Scholar
Swan, A. R. H., and Saunders, W. B. 1987. Shape and function of mid-Carboniferous (Namurian) ammonoids. Paleobiology 13:297311.CrossRefGoogle Scholar
Ward, P. D. 1980. Comparative shell shape distribution in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology 6:3243.CrossRefGoogle Scholar
Ward, P. D. 1987. The Natural History of Nautilus. Allen and Unwin, London.Google Scholar
Ward, P. D., and Greenwald, L. 1982. Chamber refilling in Nautilus. Journal of the Marine Biological Association U.K. 62:469475.CrossRefGoogle Scholar
Weitschat, W., and Bandel, K. 1991. Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontologische Zeitschrift 65:269303.CrossRefGoogle Scholar
Westermann, G. E. G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sciences Contributions Royal Ontario Museum 78:139.Google Scholar
Westermann, G. E. G. 1975. Model for origin, function, and fabrication of fluted cephalopod septa. Paläontologische Zeitschrift 49:235253.CrossRefGoogle Scholar
Westermann, G. E. G. 1992. Formation and function of suspended organic cameral sheets in Triassic ammonoids—discussion. Paläontologische Zeitschrift 66:437441.CrossRefGoogle Scholar