Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T15:40:52.195Z Has data issue: false hasContentIssue false

Allometry and Paleoecology of Medial Miocene Dwarf Rhinoceroses from the Texas Gulf Coastal Plain

Published online by Cambridge University Press:  08 February 2016

Donald R. Prothero
Affiliation:
Department of Vertebrate Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
Paul C. Sereno
Affiliation:
Department of Vertebrate Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024

Abstract

Barstovian (medial Miocene) mammalian faunas from the Texas Gulf Coastal Plain contained four apparently sympatric species of rhinoceroses: the common forms Aphelops megalodus and Teleoceras medicornutus, a dwarf Teleoceras, and a dwarf Peraceras. Previous work has suggested positive allometry in tooth area with respect to body size in several groups of mammals, i.e., larger mammals have relatively more tooth area. However, dwarfing lineages were shown to have relatively more tooth area for their body size. Our data show no significant allometry in post-canine tooth area of either artiodactyls or ceratomorphs. Similarly, dwarf rhinoceroses and hippopotami show no more tooth area than would be predicted for their size. Limbs are proportionately longer and more robust in larger living ceratomorphs (rhinos and tapirs) than predicted by previous authors. Limb proportions of both dwarf rhinoceroses and dwarf hippopotami are even more robust than in their living relatives.

The high rhinoceros diversity reflects the overall high diversity of Barstovian faunas from the Texas Gulf Coastal Plain. The first appearance of several High Plains mammals in these faunas indicates “ecotone”-like conditions as faunal composition changed. Study of living continental dwarfs shows that there is commonly an ecological separation between browsing forest dwarfs and their larger forebears, which are frequently savannah grazers. This suggests that the dwarf rhinoceroses might have been forest browsers which were sympatric with the larger grazing rhinos of the High Plains during the Barstovian invasion. The continental dwarf model also suggests that insular dwarfism may be explained by the browsing food resources that predominate on islands.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. McN. 1977. Allometry of limbs of antelopes (Bovidae). J. Zool., London. 183:125146.CrossRefGoogle Scholar
Alexander, R. McN., Jayes, A. S., Maloiy, G. M. O., and Wathuta, E. M. 1979. Allometry of limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). J. Zool., London. 189:305314.CrossRefGoogle Scholar
Ambrosetti, P. 1968. The Pleistocene dwarf elephants of Spingallo (Siracusa, southeastern Sicily). Geol. Rom., Roma. 7:277398.Google Scholar
Axelrod, D. I. and Bailey, H. P. 1976. Tertiary vegetation, climate, and altitude of the Rio Grande depression, New Mexico-Colorado. Paleobiology. 2:235254.CrossRefGoogle Scholar
Bell, R. H. V. 1969. The use of the herb layer by grazing ungulates in the Serengeti. Pp. 111128. In: Watson, A., ed. Animal Populations in Relation to their Food Resources. Symp. Brit. Ecol. Soc. Blackwell; Oxford.Google Scholar
Bell, R. H. V. 1971. A grazing ecosystem in the Serengeti. Sci. Am. 225:8693.CrossRefGoogle Scholar
Boekschoten, G. and Sondaar, P. Y. 1972. On the fossil Mammalia of Cyprus. Proc. Kon. Ned. Akad. Wetensch., Amsterdam, Series B. 75:305339.Google Scholar
Bonner, J. J. 1965. Size and Cycle. Princeton Univ. Press; Princeton, New Jersey.CrossRefGoogle Scholar
Boucot, A. J. 1976. Rates of size increase and phyletic evolution. Nature. 261:694696.CrossRefGoogle Scholar
Bourliere, F. 1975. Mammals small and large: the ecological implications of size. Pp. 18. In: Gollay, F. B., Petrusewicz, K., and Ryszkowski, L., eds. Small Mammals, their Productivity and Population Dynamics. Int. Biol. Program, Cambridge Univ. Press; London.Google Scholar
Brown, W. H. and Pearce, L. 1945. Hereditary achondroplasia in the rabbit. J. Exp. Med. 82:241260.CrossRefGoogle ScholarPubMed
Carlquist, S. 1974. Island Biology. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Case, T. J. 1978. A general explanation for insular body size trends in terrestrial vertebrates. Ecology. 59:118.CrossRefGoogle Scholar
Case, T. J. 1979. Optimal body size and an animal's diet. Acta Biotheoretica. 28:5469.CrossRefGoogle Scholar
Cock, A. G. 1966. Genetical aspects of metrical growth and form in animals. Q. Rev. Biol. 41:131190.CrossRefGoogle ScholarPubMed
Coryndon, S. C. 1977. The taxonomy and nomenclature of the Hippopotamidae (Mammalia, Artiodactyla) and a description of two new fossil species. Proc. Kon. Ned. Akad. Wetensch., Series B. 80:6188.Google Scholar
Crary, D. D. and Sawin, P. B. 1952. A second recessive achondroplasia in the domestic rabbit. J. Hered. 43:255259.CrossRefGoogle Scholar
Creighton, G. K. 1980. Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J. Zool., London. 191:435—43.CrossRefGoogle Scholar
Field, C. R. 1972. The food habits of wild ungulates in Uganda by analyses of stomach contents. East Afr. Wildlife J. 10:1742.CrossRefGoogle Scholar
Ford, S. 1980. Callithricids as phyletic dwarfs, and the place of the Callithricidae in the Platyrrhini. Primates. 21:3143.CrossRefGoogle Scholar
Foster, J. B. 1963. The evolution of native land mammals of the Queen Charlotte Islands and the problem of insularity. Unpubl. Ph.D. diss., Univ. British Columbia; Vancouver.Google Scholar
Foster, J. B. 1964. Evolution of mammals on islands. Nature. 202:234235.CrossRefGoogle Scholar
Goldstein, S., Post, D., and Melnick, D. 1978. An analysis of cercopithecoid odontometrics. I. The scaling of the maxillary dentition. Am. J. Phys. Anthro. 49:517532.CrossRefGoogle ScholarPubMed
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41:587640.CrossRefGoogle ScholarPubMed
Gould, S. J. 1970. Evolutionary paleontology and the science of form. Earth-Sci. Rev. 6:77119.CrossRefGoogle Scholar
Gould, S. J. 1971. Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. Am. Nat. 105:113136.CrossRefGoogle Scholar
Gould, S. J. 1975a. On scaling of tooth size in mammals. Am. Zool. 15:351362.CrossRefGoogle Scholar
Gould, S. J. 1975b. Allometry in primates, with emphasis on scaling and evolution of the brain. Contrib. Primatol. 5:244292.Google ScholarPubMed
Gould, S. J. 1977. Ontogeny and Phylogeny. Belknap Press; Cambridge, Massachusetts.Google Scholar
Groves, C. P. 1972. Ceratotherium simum. Mamm. Species. 8:16.Google Scholar
Groves, C. and Kurt, F. 1972. Dicerorhinus sumatrensis. Mamm. Species. 21:16.Google Scholar
Grüneberg, H. 1963. The Pathology of Development. John Wiley and Sons; New York.Google Scholar
Gwynne, M. O. and Bell, R. N. V. 1968. Selection of vegetation components by grazing ungulates in the Serengeti National Park. Nature. 220:234235.CrossRefGoogle ScholarPubMed
Heaney, L. R. 1978. Island area and body size of insular mammals: evidence from the tricolored squirrel (Callosciurus prevosti) of southeast Asia. Evolution. 32:2944.Google ScholarPubMed
Hooijer, D. A. 1946. Prehistoric and fossil rhinoceroses from the Malay Archipelago and India. Zool. Med. Mus. Leiden. 26:1138.Google Scholar
Hooijer, D. A. 1967. Indo-Australian insular elephants. Genetica. 38:143162.CrossRefGoogle ScholarPubMed
Janis, C. 1976. The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion. Evolution. 30:757774.CrossRefGoogle ScholarPubMed
Jarman, P. J. 1974. The social organisation of antelope in relation to their ecology. Behaviour. 48:215267.CrossRefGoogle Scholar
Johnson, S. L., Harshfield, G. S., and McCone, W. 1950. Dwarfism: an hereditary defect in beef cattle. J. Hered. 41:177181.CrossRefGoogle ScholarPubMed
Kay, R. F. 1975a. Allometry and early hominids. Science. 189:63.Google Scholar
Kay, R. F. 1975b. The functional adaptations of primate molar teeth. Am. J. Phys. Anthro. 43:195216.CrossRefGoogle ScholarPubMed
Kuhry, B. and Marcus, L. F. 1977. Bivariate linear models in biometry. Syst. Zool. 26:201209.CrossRefGoogle Scholar
Kurtén, B. 1965. The Carnivora of the Palestine caves. Acta Zool. Fennica. 107:174.Google Scholar
Kurtén, B. 1968. Pleistocene Mammals of Europe. Weidenfeld and Nicholson; London.Google Scholar
Landauer, W. and Chang, T. K. 1949. The Ancon or Otter Sheep: history and genetics. J. Hered. 40:105112.CrossRefGoogle Scholar
Landauer, W. and Dunn, L. C. 1930. Studies on the creeper fowl. I. Genetics. J. Genet. 23:397412.Google Scholar
Levin, R. 1968. Evolution in Changing Environments. Princeton Univ. Press; Princeton, New Jersey.CrossRefGoogle Scholar
Maglio, V. J. 1972. Evolution of mastication in the Elephantidae. Evolution. 26:638658.CrossRefGoogle ScholarPubMed
Maglio, V. J. 1973. Origin and evolution of the Elephantidae. Trans. Am. Phil. Soc. 63:1149.CrossRefGoogle Scholar
Maloiy, G. M. O., Alexander, R. McN., Njau, R., and Jayes, A. S. 1979. Allometry of the legs of running birds. J. Zool., London. 187:169178.CrossRefGoogle Scholar
Marshall, L. G. and Corruccini, R. S. 1978. Variability, evolutionary rates, and allometry in dwarfing lineages. Paleobiology. 4:101119.CrossRefGoogle Scholar
McMahon, T. A. 1973. Size and shape in biology. Science. 179:12011204.CrossRefGoogle ScholarPubMed
McMahon, T. A. 1975. Allometry and biomechanics: limb bones of adult ungulates. Am. Nat. 109:547563.CrossRefGoogle Scholar
McKusick, V. A. 1955. Primordial dwarfism and ectopia lentis. Am. J. Human Genet. 7:189198.Google ScholarPubMed
McKusick, V. A., Eldridge, R., Hostetler, J. A., Ruangit, U., and Egeland, J. A. 1965. Dwarfism in the Amish. Bull. Johns Hopkins Hosp. 116:285326.Google ScholarPubMed
Mead, S. W., Gregory, P. W., and Regan, W. M. 1942. Proportionate dwarfism in Jersey cows. J. Hered. 33:411416.CrossRefGoogle Scholar
Mead, S. W., Gregory, P. W., and Regan, W. M. 1946. A recurrent mutation of dominant achondroplasia in cattle. J. Hered. 37:183188.CrossRefGoogle ScholarPubMed
Napier, N. R. and Napier, P. H. 1967. A Handbook of Living Primates. Academic Press; New York.Google Scholar
Patton, T. H. and Taylor, B. E. 1971. The Synthetoceratinae (Mammalia, Tylopoda, Protoceratidae). Bull. Am. Mus. Nat. Hist. 145:119218.Google Scholar
Patton, T. H. and Taylor, B. E. 1973. The Protoceratinae (Mammalia, Tylopoda, Protoceratidae) and the systematics of the Protoceratidae. Bull. Am. Mus. Nat. Hist. 150:347414.Google Scholar
Pilbeam, D. R. and Gould, S. J. 1974. Size and scaling in human evolution. Science. 186:892.CrossRefGoogle ScholarPubMed
Pilbeam, D. R. and Gould, S. J. 1975. Allometry and early hominids. Science. 189:64.CrossRefGoogle Scholar
Prothero, D. R. and Manning, E. (in review). Miocene rhinoceroses from the Texas Gulf Coastal Plain.Google Scholar
Prothero, D. R. and Sereno, P. C. 1980. Allometry and paleoecology of medial Miocene dwarf rhinoceroses from the Texas Gulf Coastal Plain. Geol. Soc. Am. Abstr. with Prog. 12(7):504.Google Scholar
Rensberger, J. M. 1973. Sanctimus (Mammalia, Rodentia) and the phyletic relationships of the large Arikareean geomyoids. J. Paleontol. 47:835853.Google Scholar
Rosenzweig, M. L. 1968. The strategy of body size in mammalian carnivores. Am. Midl. Nat. 80:299315.CrossRefGoogle Scholar
Schoener, T. J. 1969. Models of optimum size for solitary predators. Am. Nat. 103:227313.CrossRefGoogle Scholar
Skinner, M. F. and MacFadden, B. J. 1977. Cormohipparion n. gen. (Mammalia, Equidae) from the North American Miocene (Barstovian-Clarendonian). J. Paleontol. 51:912926.Google Scholar
Skinner, M. F., Skinner, S. M., and Gooris, R. J. 1977. Stratigraphy and biostratigraphy of Late Cenozoic deposits in central Sioux County, western Nebraska. Bull. Am. Mus. Nat. Hist. 158:263370.Google Scholar
Snedecor, G. W. and Cochran, W. G. 1967. Statistical Methods. Iowa State Univ. Press; Ames, Iowa.Google Scholar
Sondaar, P. Y. 1977. Insularity and its effect on mammal evolution. Pp. 671707. In: Hecht, M. K., Goody, P. C., and Hecht, B. M., eds. Major patterns of Vertebrate Evolution. Plenum Press; New York.CrossRefGoogle Scholar
Sondaar, P. Y. and Boekschoten, G. J. 1967. Quaternary mammals in the South Aegean Island arc. Proc. Kon. Ned. Akad. Wetensch., Amsterdam, Series B. 70:556576.Google Scholar
Stahl, W. R. 1962. Similarity and dimensional methods in biology. Science. 137:205212.CrossRefGoogle ScholarPubMed
Stenzel, H. B., Turner, F. E., and Hesse, C. J. 1944. Brackish and non-marine Miocene in southeastern Texas. Bull. Am. Assoc. Petrol. Geol. 28:9771011.Google Scholar
Stephens, F. E. 1943. An achondroplastic mutation and the nature of its inheritance. J. Hered. 34:229235.CrossRefGoogle Scholar
Stewart, D. R. M. and Stewart, J. 1970. Food preference by faecal analysis for African plains ungulates. Zool. Afr. 3:115129.Google Scholar
Tedford, R. H. and others. In press. Faunal succession and biochronology of the Arikareean through Hemphillian interval (late Oligocene through late Miocene Epochs), North America. In: Woodburne, M. O., ed. Vertebrate Paleontology as a Discipline in Geochronology. Univ. Calif. Press; Berkeley, California.Google Scholar
Van Valen, L. 1973. Pattern and balance of nature. Evol. Theory. 1:3149.Google Scholar
Von la Chevallerie, M. 1970. Meat production from wild ungulates. Proc. S. African Soc. Anim. Prod. 9:7387.Google Scholar
Walker, E. P. 1964. Mammals of the World. Vol. 2. Johns Hopkins Press; Baltimore.Google Scholar
Wassersug, R. J., Yang, H., Sepkoski, J., and Raup, D. M. 1979. The evolution of body size on islands: a computer simulation. Am. Nat. 114:287295.CrossRefGoogle Scholar
Webb, S. D. 1977. A history of savanna vertebrates in the New World. Part I: North America. Ann. Rev. Ecol. Syst. 8:355380.Google Scholar