Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:12:59.194Z Has data issue: false hasContentIssue false

Adjusting global extinction rates to account for taxonomic susceptibility

Published online by Cambridge University Press:  08 April 2016

Steve C. Wang
Affiliation:
Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania 19081. E-mail: [email protected]
Andrew M. Bush
Affiliation:
Department of Ecology and Evolutionary Biology and Center for Integrative Geosciences, University of Connecticut, 75 North Eagleville Rd, Unit 3043, Storrs, Connecticut 06269. E-mail: [email protected]

Abstract

Studies of extinction in the fossil record commonly involve comparisons of taxonomic extinction rates, often expressed as the percentage of taxa (e.g., families or genera) going extinct in a time interval. Such extinction rates may be influenced by factors that do not reflect the intrinsic severity of an extinction trigger. Two identical triggering events (e.g., bolide impacts, sea level changes, volcanic eruptions) could lead to different taxonomic extinction rates depending on factors specific to the time interval in which they occur, such as the susceptibility of the fauna or flora to extinction, the stability of food webs, the positions of the continents, and so on. Thus, it is possible for an extinction event with a higher taxonomic extinction rate to be caused by an intrinsically less severe trigger, compared to an event with a lower taxonomic extinction rate.

Here, we isolate the effects of taxonomic susceptibility on extinction rates. Specifically, we quantify the extent to which the taxonomic extinction rate in a substage is elevated or depressed by the vulnerability to extinction of classes extant in that substage. Using a logistic regression model, we estimate that the taxonomic susceptibility of marine fauna to extinction has generally declined through the Phanerozoic, and we adjust the observed extinction rate in each substage to estimate the intrinsic extinction severity more accurately. We find that mass extinctions do not generally occur during intervals of unusually high susceptibility, although susceptibility sometimes increases in post-extinction recovery intervals. Furthermore, the susceptibility of specific animal classes to extinction is generally similar in times of background and mass extinction, providing no evidence for differing regimes of extinction selectivity. Finally, we find an inverse correlation between extinction rate within substages and the evenness of diversity of major taxonomic groups, but further analyses indicate that low evenness itself does not cause high rates of extinction.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716723.CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction: experimental results and theoretical interpretation. Science 208:10951108.CrossRefGoogle Scholar
Appleton, D. R., French, J. M., and Vanderpump, M. P. J. 1996. Ignoring a covariate: an example of Simpson's paradox. American Statistician 50:340341.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in Tevesz, M. and McCall, P., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and Adaptive Variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.CrossRefGoogle Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34, 127155.CrossRefGoogle Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.CrossRefGoogle ScholarPubMed
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.2.0.CO;2>CrossRefGoogle Scholar
Barnett, A. 1994. How numbers can trick you. Technology Review 97:3845.Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.CrossRefGoogle ScholarPubMed
Bickel, P. J., Hammel, E. A., and O'Connell, J. W. 1975. Sex bias in graduate admissions: data from Berkeley. Science 187:398404.CrossRefGoogle ScholarPubMed
Bond, D., Wignall, P. B., and Racki, G. 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine 141:173193.CrossRefGoogle Scholar
Boyajian, G. F. 1986. Phanerozoic trends in background extinction: consequences of an aging fauna. Geology 14:955958.2.0.CO;2>CrossRefGoogle Scholar
Brasier, M. D., and Sukhov, S. S. 1998. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: Northern Siberia data. Canadian Journal of Earth Sciences 35:353373.CrossRefGoogle Scholar
Casella, G., and Berger, R. L. 2002. Statistical inference, 2d ed. Duxbury, Pacific Grove, Calif. Google Scholar
Chen, Z.-Q., Kunio, K., and George, A. D. 2005. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeography, Palaeoclimatology, Palaeoecology 224:270290.CrossRefGoogle Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and McGhee, G. R. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675678.2.0.CO;2>CrossRefGoogle Scholar
Erwin, D. H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences USA 98:53995403.CrossRefGoogle ScholarPubMed
Erwin, D. H. 2006. Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, N.J. Google Scholar
Flessa, K. W., and Jablonski, D. 1985. Declining Phanerozoic background extinction rates: effect of taxonomic structure? Nature 313:216218.CrossRefGoogle Scholar
Foote, M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33:262273.CrossRefGoogle Scholar
Gilinsky, N. L. 1994. Volatility and the Phanerozoic decline of background extinction intensity. Paleobiology 20:445458.CrossRefGoogle Scholar
Gross, S. R., and Mauro, R. 1984. Patterns of death: an analysis of racial disparities in capital sentencing and homicide victimization. Stanford Law Review 37:27153.CrossRefGoogle Scholar
Hosmer, D. W., and Lemeshow, S. 2000. Applied logistic regression, 2d ed. Wiley, New York.CrossRefGoogle Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578602.CrossRefGoogle Scholar
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235238.CrossRefGoogle ScholarPubMed
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 2005. Mass extinctions and macroevolution. In Vrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency. Paleobiology 31(Suppl. to 2):192210.CrossRefGoogle Scholar
Joachimski, M. M., and Buggisch, W. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30:711714.2.0.CO;2>CrossRefGoogle Scholar
Kiessling, W. 2005. Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 433:410413.CrossRefGoogle ScholarPubMed
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative earth history and Late Permian mass extinction. Science 273:452457.CrossRefGoogle ScholarPubMed
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.CrossRefGoogle Scholar
Krug, A. Z., and Patzkowsky, M. E. 2007. Geographic variation in turnover and recovery from the Late Ordovician mass extinction. Paleobiology 33:435454.CrossRefGoogle Scholar
Lehrmann, D. J., Payne, J. L., Felix, S. V., Dillett, P. M., Wang, H., Yu, Y., and Wei, J. 2003. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, South China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios 18:138152.2.0.CO;2>CrossRefGoogle Scholar
MacLeod, N. 2004. Identifying Phanerozoic extinction controls: statistical considerations and preliminary results. In Beaudoin, A. B. and Head, M. J., eds. The palynology and micropaleontology of boundaries. Geological Society of London Special Publication 230:1133.CrossRefGoogle Scholar
McCann, K. S. 2000. The diversity-stability debate. Nature 405:228233.CrossRefGoogle ScholarPubMed
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.CrossRefGoogle Scholar
McGrady-Steed, J., Harris, P. M., and Morin, P. J. 1997. Biodiversity regulates ecosystem predictability. Nature 390:162165.CrossRefGoogle Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.CrossRefGoogle ScholarPubMed
Naeem, S., and Li, S. 1997. Biodiversity enhances ecosystem reliability. Nature 390:507509.CrossRefGoogle Scholar
Olszewski, T. D. 2004. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104:377387.CrossRefGoogle Scholar
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.CrossRefGoogle Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.CrossRefGoogle ScholarPubMed
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506509.CrossRefGoogle ScholarPubMed
Payne, J. L., Lehrmann, D. J., Wei, J., and Knoll, A. H. 2006. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:6385.CrossRefGoogle Scholar
Pease, C. M. 1992. On the declining extinction and origination rates of fossil taxa. Paleobiology 18:8992.CrossRefGoogle Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.CrossRefGoogle ScholarPubMed
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.CrossRefGoogle Scholar
Pruss, S. B., and Bottjer, D. J. 2004a. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios 19:551564.2.0.CO;2>CrossRefGoogle Scholar
Pruss, S. B., and Bottjer, D. J. 2004b. Late Early Triassic microbial reefs of the western United States: a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 211:127137.CrossRefGoogle Scholar
Pruss, S., Fraiser, M., and Bottjer, D. J. 2004. Proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end-Permian mass extinction. Geology 32:461464.CrossRefGoogle Scholar
R Development Core Team. 2007. R: a language and environment for statistical computing, Version 2.5.0. R Foundation for Statistical Computing, Vienna. http://www.R-project.org Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences USA 81:801805.CrossRefGoogle ScholarPubMed
Retallack, G. J. 1999. Postapocalyptic greenhouse revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geological Society of America Bulletin 111:5270.2.3.CO;2>CrossRefGoogle Scholar
Rodland, D. L., and Bottjer, D. J. 2001. Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95101.2.0.CO;2>CrossRefGoogle Scholar
Rohde, R. A., and Muller, R. A. 2005. Cycles in fossil diversity. Nature 434:208210.CrossRefGoogle ScholarPubMed
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., and Hertog, R. 2007. Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society of London B 274:20772086.Google ScholarPubMed
Saltzman, M. R., González, L. A., and Lohmann, K. C. 2000. Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology 28:347350.2.0.CO;2>CrossRefGoogle Scholar
Schubert, J. K., and Bottjer, D. J. 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883886.2.3.CO;2>CrossRefGoogle Scholar
Schubert, J. K., and Bottjer, D. J. 1995. Aftermath of the Permian–Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the Western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116:139.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1987. Environmental trends in extinction during the Phanerozoic. Science 235:6466.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1991. A model of onshore-offshore change in faunal diversity. Paleobiology 17:5877.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.CrossRefGoogle Scholar
Sheehan, P. M. 2001. The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences 29:331364.CrossRefGoogle Scholar
Sheehan, P. M., and Fastovsky, D. E. 1992. Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology 20:556560.2.3.CO;2>CrossRefGoogle Scholar
Simpson, E. H. 1951. The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society B 13:238241.Google Scholar
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: pattern and process. In W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology Memoirs No. 4. Paleobiology 33(Suppl. to No. 4).Google Scholar
Stanley, S. M., and Yang, X. 1994. A double mass extinction at the end of the Paleozoic Era. Science 266:13401344.CrossRefGoogle ScholarPubMed
Tilman, D., and Downing, J. A. 1994. Biodiversity and stability in grasslands. Nature 367:363365.CrossRefGoogle Scholar
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29:351354.2.0.CO;2>CrossRefGoogle Scholar
Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. R., Richoz, S. 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32:805808.CrossRefGoogle Scholar
Van Valen, L. M. 1985. A theory of origination and extinction. Evolutionary Theory 7:133142.Google Scholar
Van Valen, L. M. 1987. Comment (on “Phanerozoic trends in background extinction: consequences of an aging fauna”). Geology 14:875876.2.0.CO;2>CrossRefGoogle Scholar
Wang, S. C. 2003. On the continuity of background and mass extinction. Paleobiology 29:455467.2.0.CO;2>CrossRefGoogle Scholar
Wang, S. C., and Everson, P. J. 2007. Confidence intervals for pulsed mass extinction events. Paleobiology 33:324336.CrossRefGoogle Scholar
Wignall, P. B., and Twitchett, R. J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. Geological Society of America Special Paper 356:395413.Google Scholar