Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T05:02:15.524Z Has data issue: false hasContentIssue false

When domes are spandrels: on septation in turritellids (Cerithioidea) and other gastropods

Published online by Cambridge University Press:  30 May 2018

Brendan M. Anderson
Affiliation:
Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York 14850, U.S.A.; and Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, U.S.A. E-mail: [email protected], [email protected]
Warren D. Allmon
Affiliation:
Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York 14850, U.S.A.; and Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, U.S.A. E-mail: [email protected], [email protected]

Abstract

Although generally considered rare in gastropods, septation has long been noted in turritellids, but functional hypotheses do not survive strong scrutiny. Here we outline a methodology for testing spandrel hypotheses and apply it to the problem of turritellid septa. We follow Gould in using “spandrel” as a term for all features that are nonadaptive sequelae of adaptive features of organisms, including those that are structurally necessary, those that are developmentally correlated, and nondeterministic by-products that are correlated to features under selection.

In turritellids, septa are constructed in microstructural continuity with secondary internal thickening of the shell, are highly variable features infraspecifically, and are strongly associated with degree of shell thickening. We therefore conclude that rather than being themselves adaptive, turritellid septa are spandrels of shell thickening. Turritellid septa are composed of crossed lamellar aragonite, which appears to be constructed by mantle epithelium over the visceral mass. Septation was also found in 22 of 24 gastropod families examined from a broad phylogenetic distribution. Septa thus appear to be a widespread feature of caenogastropods, in strong contrast to previous assertions that septa are less common in modern or high-spired shells.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aiello, L. C., and Wheeler, P.. 1995. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Current Anthropology 36:199221.Google Scholar
Alberch, P. 1986. Possible dogs. Natural History 95(12):48.Google Scholar
Allmon, W. D. 2005. Kapalmerella, a new name for the genus Palmerella allmon, 1996 (Gastropoda : Turritellidae) preoccupied by Palmerella Cameron, 1908 (Insecta: Hymenoptera). Journal of Paleontology 79:12341234.Google Scholar
Allmon, W. D. 2011. Natural history of turritelline gastropods (Cerithiodea: Turritellidae): a status report. Malacologia 54:159202.Google Scholar
Anderson, B. M., Hendy, A., Johnson, E. H., and Allmon, W. D.. 2017. Paleoecology and paleoenvironmental implications of turritelline gastropod-dominated assemblages from the Gatun Formation (Upper Miocene) of Panama. Palaeogeography, Palaeoclimatology, Palaeoecology 470:132146.Google Scholar
Andrews, H. E. 1971. Turritella mortoni (Gastropoda) and biostratigraphy of the Aquia Formation (Paleocene) of Maryland and Virginia. Ph.D. dissertation. Harvard University, Cambridge, Mass.Google Scholar
Andrews, H. E. 1974. Morphometrics and functional morphology of Turritella mortoni . Journal of Paleontology 48:11261140.Google Scholar
Avery, R., and Etter, R. J.. 2006. Microstructural differences in the reinforcement of a gastropod shell against predation. Marine Ecology Progress Series 323:159170.Google Scholar
Bandel, K. 1979. Übergänge von einfacheren Strukturtypen zur Kreuzlamellenstruktur bei Gastropodenschalen. Biomineralisation 10:938.Google Scholar
Bandel, K. 1990. Shell structure of the Gastropoda excluding Archaeogastropoda. Pp. 117134 in J. G. Carter, ed. Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York.Google Scholar
Bandel, K. 1991. Ontogenetic changes reflected in the morphology of the molluscan shell. Pp. 211230 in N. Schmidt-Kittler, and K. Vogel, eds. Constructional morphology and evolution. Springer, Berlin.Google Scholar
Bandel, K. 1996. Phylogeny of the Caecidae (Caenogastropoda). Mitteilungen Geologie-Paläontologie Institut der Universitat Hamburg 79:53–15.Google Scholar
Bandel, K., Nützel, A., and Yancey, T. E.. 2002. Larval shells and shell microstructures of exceptionally well-preserved Late Carboniferous gastropods from the Buckhorn Asphalt deposit (Oklahoma, USA). Senckenbergiana lethaea 82:639689.Google Scholar
Beu, A. G. 2010. Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 3. Gastropoda (Vetigastropoda–Littorinimorpha). Journal of the Royal Society of New Zealand 40:59180.Google Scholar
Bieler, R. 1993. Architectonicidae of the Indo-Pacific (Mollusca, Gastropoda). Fischer, New York.Google Scholar
Bieler, R. 2004. Sanitation with sponge and plunger: western Atlantic slit-wormsnails (Mollusca: Caenogastropoda: Siliquariidae). Zoological Journal of the Linnean Society 140:307333.Google Scholar
Bieler, R., and Hadfield, M. G.. 1990. Reproductive biology of the sessile gastropod Vermiculariaspirata (Cerithioidea, Turritellidae). Journal of Molluscan Studies 56:205219.Google Scholar
Bouchet, P., Rocroi, J. P., Fryda, J., Hausdorf, B., Ponder, W., Valdes, A., and Waren, A.. 2005. Classification and nomenclator of gastropod families. Malacologia 47:1368.Google Scholar
Bruguière, J. G. 1792. Encyclopédie méthodique: histoire naturelle des vers. Panckoucke, Paris.Google Scholar
Brown, D., Fison, T., Southgate, V., and Wright, C.. 1984. Aquatic snails of the Jonglei region, southern Sudan, and transmission of trematode parasites. Hydrobiologia 110:247271.Google Scholar
Checa, A. G. 2000. Remote biomineralization in divaricate ribs of Strigilla and Solecurtus (Tellinoidea: Bivalvia). Journal of Molluscan Studies 66:457466.Google Scholar
Chinzei, K., and Seilacher, A.. 1993. Remote biomineralization I: fill skeletons in vesicular oyster shells. Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 190:349362.Google Scholar
Cook, A. G. 1993. Fletcherviewia septata—a new high-spired, septate gastropod from the Devonian of North Queensland. Journal of Paleontology 67:816821.Google Scholar
Cook, A. G., Jell, P. A., Webb, G. E., Johnson, M. E., and Baarli, B. G.. 2015. Septate gastropods from the Upper Devonian of the Canning Basin: implications for palaeoecology. Alcheringa: An Australasian. Journal of Palaeontology 39:519524.Google Scholar
Dattilo, B. F., Freeman, R. L., Peters, W. S., Heimbrock, W. P., Deline, B., Martin, A. J., Kallmeyer, J. W., Reeder, J., and Argast, A.. 2016. Giants among micromorphs: were Cincinnatian (Ordovician, Katian) small shelly phosphatic faunas dwarfed? Palaios 31:5570.Google Scholar
Dauphin, Y. 2006. Structure and composition of the septal nacreous layer of Nautilus macromphalus L. (Mollusca, Cephalopoda). Zoology (Jena) 109:8595.Google Scholar
de Paula, S. M., and Silveira, M.. 2009. Studies on molluscan shells: contributions from microscopic and analytical methods. Micron 40:669690.Google Scholar
Dillaman, R. M. 1981. Dart formation in Helix aspersa (Mollusca, Gastropoda). Zoomorphology 97:247261.Google Scholar
Draper, B. C. 1985. Mollusks which truncate their shells and how they plug the openings. Festivus 17:39.Google Scholar
Dzik, J. 1978. Larval development of hyolithids. Lethaia 11:293299.Google Scholar
Fernández, M., Valenzuela, F., and Arias, N.-C.. 2016. Is the snail shell repair process really influenced by eggshell membrane as a template of foreign scaffold? Journal of Structural Biology 196:187196.Google Scholar
Fleury, C., Marin, F., Marie, B., Luquet, G., Thomas, J., Josse, C., Serpentini, A., and Lebel, J.-M.. 2008. Shell repair process in the green ormer Haliotis tuberculata: a histological and microstructural study. Tissue and Cell 40:207218.Google Scholar
Ford, H. 2006. Athleta toumeyi, fossil gastropod. DigiMorph. http://digimorph.org/specimens/Athleta_toumeyi, accessed 8 August 2015.Google Scholar
Fortey, R. 2009. Fossils: the history of life. Sterling, New York.Google Scholar
Frech, R., Wang, E. C., and Bates, J. B.. 1980. The i.r. and Raman spectra of CaCO3 (aragonite). Spectrochimica Acta 36A:915919.Google Scholar
Fretter, V., and Graham, A.. 1962. British prosobranch molluscs. Ray. Society. London.Google Scholar
Gittenberger, E., and Povel, G. D. E.. 1995. Shell growth and decollation in terrestrial gastropods. Nautilus 109:3840.Google Scholar
Gould, S. J. 1981. Hyena myths and realities. Natural History 90(2), 1621.Google Scholar
Gould, S. J. 1987. Freudian slip. Natural History 96(2):14–21. Reprint, 1991, Male nipples and clitoral ripples, in Bully for brontosaurus. Norton, New York, 124–138.Google Scholar
Gould, S. J. 1997. The exaptive excellence of spandrels as a term and prototype. Proceedings of the National Academy of Sciences USA 94:10750–10755.Google Scholar
Gould, S. J. 2000. More things in heaven and Earth. Pp. 101–126 in H. Rose and S. Rose, eds. Alas, poor Darwin: arguments against evolutionary psychology. Harmony, New York. Reprint, 2006, The richness of life: the essential Stephen Jay Gould, ed. S. Rose. Norton, New York, pp. 444–466.Google Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Belknap, Cambridge, Mass.Google Scholar
Gould, S. J., and Lewontin, R. C.. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B 205(1161):581–598.Google Scholar
Gould, S. J., and Vrba, E. S.. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:415.Google Scholar
Gray, J. 1834. Enumeration of the species of the genus Terebra. Proceedings of the Zoological Society of London 2:59–63.Google Scholar
Grzybowski, J. B. 1899. Die Tertiärablagerungen des nördlichen Peru und ihre Molluskenfauna. E. Schweizerbart’sche Verlagshandlung (E. Nägele), Stuttgart, Germany.Google Scholar
Gubanov, A. P., Peel, J. S., and Pianovskaya, I. A.. 1995. Soft-sediment adaptations in a new Silurian gastropod from Central Asia. Palaeontology 38:831842.Google Scholar
Heilprin, A. 1887. Explorations on the west coast of Florida and in the Okeechobee wilderness: with special reference to the geology and zoology of the Floridian peninsula. Wagner Free Institute of Science of Philadelphia, Philadelphia.Google Scholar
Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J., and Allmon, W. D.. 2014. The generification of the fossil record. Paleobiology 40:511528.Google Scholar
Hickman, C. S. 2013. Interacting constraints and the problem of similarity in gastropod structure and function. American Malacological Bulletin 31:155168.Google Scholar
Hochpöchler, F., and Kothbauer, H.. 1975. Der mechanismus der dekollation bei Rumina decollata (L.) (Gastropoda: Stylommatophora). Archiv fur Molluskenkunde 106:119121.Google Scholar
Houbrick, R. S. 1981. Anatomy, biology and systematics of Campanile symbolicum with reference to adaptive radiation of the Cerithiacea (Gastropoda, Prosobranchia). Malacologia 21:263289.Google Scholar
Houston, A. I. 1997. Are the spandrels of San Marco really Panglossian pendentives? Trends in Ecology and Evolution 12:125.Google Scholar
Houston, A. I. 2009. San Marco and evolutionary biology. Biology and Philosophy 24:215230.Google Scholar
Hutton, F. W. 1873. Catalogue of the marine Mollusca of New Zealand: with diagnoses of the species. Colonial Museum and Geological Survey Department, Wellington, New Zealand.Google Scholar
Johnson, E. H., Anderson, B. M., and Allmon, W. D.. 2017. What can we learn from all those pieces? Obtaining data on drilling predation from fragmented high-spired gastropod shells. Palaios 32:271277.Google Scholar
Kemperman, C. M., and Gittenberger, E.. 1988. On morphology, function and taxonomic importance of the shell ribs in Clausiliidae (Mollusca: Gastropoda Pulmonata), with special reference to those in Albinaria . Basteria 52:77100.Google Scholar
Kohn, A. J., Myers, E. R., and Meenakshi, V. R.. 1979. Interior remodeling of the shell by a gastropod mollusc. Proceedings of the National Academy of Sciences USA 76:3406–3410.Google Scholar
Lindholm, W. 1924. A revised systematic list of the genera of the Clausiliidae, recent and fossil, with their subdivisions, synonymy, and types. Journal of Molluscan Studies 16:5364.Google Scholar
Linnaeus, C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentius Salvius, Stockholm.Google Scholar
Lloyd, E. A. 2013. Stephen J. Gould and adaptation: San Marco 33 years later. Pp. 2135 in G. Danieli, A. Minelli, and T. Pievani, eds. Stephen J. Gould: the scientific legacy. Springer, Milan.Google Scholar
Lowenstam, H. A., and Weiner, S.. 1989. On biomineralization. Oxford University Press, New York.Google Scholar
Lyell, C. 1838. Elements of geology. John Murray, London.Google Scholar
Majewske, O. P. 1974. Recognition of invertebrate fossil fragments in rocks and thin sections. Brill, Leiden, Netherlands.Google Scholar
Mark, R. 1996. Architecture and evolution. American Scientist 84:383389.Google Scholar
Marshall, D. J., and Day, R.. 2001. Change in the rate of shell deposition and shell microstructure in response to shell borers in the abalone Haliotis rubra . Marine and Freshwater Behaviour and Physiology 34:189195.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.Google Scholar
Merriam, C. W. 1941. Fossil turritellas from the Pacific coast region of North America. University of California Publications, Department of Geological Sciences Bulletin 26:1214.Google Scholar
Mighels, J. W. 1845. Descriptions of shells from the Sandwich Islands, and other localities. Proceedings of the Boston Society of Natural History 2:18–25.Google Scholar
Moysiuk, J., Smith, M. R., and Caron, J.-B.. 2017. Hyoliths are Palaeozoic lophophorates. Nature 541:394.Google Scholar
Muzii, E., Catherine, H., and Skinner, W.. 1966. Calcite deposition during shell repair by the aragonitic gastropod Murex fulvescens . Science 151:201203.Google Scholar
Negus, M. R. 1968. The nutrition of sporocysts of the trematode Cercaria doricha Rothschild, 1935 in the molluscan host Turritella communis Risso. Parasitology 58:355366.Google Scholar
Nouet, J., Cotte, M., Cuif, J.-P., Dauphin, Y., and Salomé, M.. 2012. Biochemical change at the setting-up of the crossed-lamellar layer in Nerita undata shell (Mollusca, Gastropoda). Minerals 2:8599.Google Scholar
Olcott Marshall, A., and Marshall, C. P.. 2015. Vibrational spectroscopy of fossils. Palaeontology 58:201211.Google Scholar
Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London B 255:37–45.Google Scholar
Pall-Gergely, B., and Nemeth, L.. 2008. Observations on the breeding habits, shell development, decollation, and reproductive anatomy of Pontophaedusa funiculum (Mousson 1856) (Gastropoda, Pulmonata, Clausiliidae, Phaedusinae). Malacologica Bohemoslovaca 7:1114.Google Scholar
Palmer, A. R. 1983. Relative cost of producing skeletal organic matrix versus calcification—evidence from marine gastropods. Marine Biology 75:287292.Google Scholar
Pampush, J. D., and Daegling, D. J.. 2016. The enduring puzzle of the human chin. Evolutionary Anthropology. Issues, News, and Reviews 25:2035.Google Scholar
Parkhaev, P. Y. 2017. Origin and the early evolution of the phylum Mollusca. Paleontological Journal 51:663683.Google Scholar
Perez, C. 1936. Atrophie des glandes genitals de la Turritelle sous l, influence du parasitisme par les sporocystes d’une trématode. Memoires, Museum Royale d’Histoire Naturelle de Belgique, series 2 3:539547.Google Scholar
Pigliucci, M., and Kaplan, J.. 2000. The fall and rise of Dr Pangloss: adaptationism and the Spandrels paper 20 years later. Trends in Ecology and Evolution 15:66–70.Google Scholar
Plotnick, R.E., and Wagner, P.J.. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32:126146.Google Scholar
Ponder, W. F., Colgan, D. J., Healy, J. M., Nutzel, A., Simone, L. R. L., and Strong, E.. 2008. Caenogastropoda. Pp. 331384. in W. F. Ponder, and D. R. Lindberg, eds. Phylogeny and evolution of the Mollusca. University of California Press, Berkeley.Google Scholar
Poulin, R., and Mouritsen, K. N.. 2003. Large-scale determinants of trematode infections in intertidal gastropods. Marine Ecology Progress Series 254:187198.Google Scholar
Quoy, J. R. C., and Gaimard, J. P.. 1834. Voyage de découvertes de l’Astrolabe exécuté par ordre du Roi, pendant les années 1826–1827–1828–1829, sur le commandement de M. J. Dumont d’Urville. Tastu, Paris.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Ray, A. K. 2008. Fossils in earth sciences. PHI Learning Private, New Delhi.Google Scholar
Rensch, B. 1959. Evolution above the species level. Columbia University Press, New York.Google Scholar
Reeve, L. A. 1849. Monograph of the genus Turritella . Reeve & Co., London.Google Scholar
Risso, A. 1826. Histoire naturelle des principales productions de l’Europe Méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. Levrault, Paris.Google Scholar
Rohr, D. M., and Blodgett, R. B.. 2016. A Silurian septate Murchisoniid gastropod from Glacier Bay, Alaska. New Mexico Museum of Natural History and Science Bulletin 74:231232.Google Scholar
Rothschild, M. 1935. The trematode parasites of Turritella communis Lmk. from Plymouth and Naples. Parasitology 27:152170.Google Scholar
Salinas, C., and Kisailus, D.. 2013. Fracture mitigation strategies in gastropod shells. JOM: The Journal of The Minerals, Metals and Materials Society 65:473480.Google Scholar
Say, T. 1822. An account of some of the marine shells of the United States. Journal of the Academy of Natural Sciences of Philadelphia 2:221248.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktionsmorphologie. Lethaia 3:393396.Google Scholar
Spieker, E. M. 1922. The paleontology of the Zorritos Formation of the north Peruvian oil fields. Johns Hopkins University Press, Baltimore, Md.Google Scholar
Stimpson, W. 1851. Shells of New England. A revision of the synonymy of the testaceous mollusks of New England with notes on their structures, and their geographical and bathymetrical distribution with figures of new species. Phillips, Sampson, and Company, Boston.Google Scholar
Strong, E. E., Colgan, D. J., Healy, J. M., Lydeard, C., Ponder, W. F., and Glaubrecht, M.. 2011. Phylogeny of the gastropod superfamily Cerithioidea using morphology and molecules. Zoological Journal of the Linnean Society 162:4389.Google Scholar
Tull, D. S., and Bohning-Gaese, K.. 1993. Patterns of drilling predation on gastropods of the family Turritellidae in the Gulf-of-California. Paleobiology 19:476486.Google Scholar
Urmos, J., Sharma, S. K., and Mackenzie, F. T.. 1991. Characterization of some biogenic carbonates with Raman-spectroscopy. American Mineralogist 76:641646.Google Scholar
Valenciennes, A. 1832. Coquilles univalves marines de l’Amérique équinoxiale, recueillies pendant le voyage de MM. A. de Humboldt et A. Bonpland. Pp. 262339 in A. v. H. A. Bonpland, ed. Observations de zoologie et d’anatomie comparée, 2. Smith and Gide, Paris.Google Scholar
Van Valen, L. 2009. How ubiquitous is adaptation? A critique of the epiphenomenist program. Biology and Philosophy 24:267280.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 2013. On escalation. Annual Review of Earth and Planetary Sciences 41:119.Google Scholar
Vermeij, G. J. 2014. The oyster enigma variations: a hypothesis of microbial calcification. Paleobiology 40:113.Google Scholar
Vest, W. von. 1867. Ueber den Schliess-apparat der Clausilien. Verhandlungen und Mittheilungen der Siebenbürgischen Vereins für Naturwissenschaften 18:518.Google Scholar
Voltzow, J. 1994. Gastropoda: prosobranchia. Microscopic Anatomy of Invertebrates 5:111252.Google Scholar
Wagner, G. P. 2007. The developmental genetics of homology. Nature Reviews Genetics 8:473479.Google Scholar
Wagner, P. J. 1999. Phylogenetic relationships of the earliest anisostrophically coiled gastropods. Smithsonian Contributions to Paleobiology 88:1132.Google Scholar
Wagner, G. P. 2007. The developmental genetics of homology. Nature Reviews Genetics 8:473479.Google Scholar
Wehrmeister, U., Soldati, A. L., Jacob, D. E., Hager, T., and Hofmeister, W.. 2010. Raman spectroscopy of synthetic, geological and biological vaterite: a Raman spectroscopic study. Journal of Raman Spectroscopy 41:193201.Google Scholar
Weiner, S., Traub, W., and Parker, S.. 1984. Macromolecules in mollusc shells and their functions in biomineralization [and Discussion]. Philosophical Transactions of the Royal Society B 304:425434.Google Scholar
Wright, C. A. 1956. Studies on the life-history and ecology of the trematode genus Renicola Cohn, 1904. Proceedings of the Zoological Society of London 126(1):1–50.Google Scholar
Wright, C. A. 1971. Flukes and snails. Allen and Unwin, London.Google Scholar
Yochelson, E. L. 1971. A new Late Devonian gastropod and its bearing on problems of open coiling and septation. Pp. 231241 in J. T. Dutro, ed. Paleozoic perspectives: a paleontological tribute to G. Arthur Cooper. Smithsonian Institution Press, Washington, D.C.Google Scholar