Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:38:42.335Z Has data issue: false hasContentIssue false

A ubiquitous ∼62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation

Published online by Cambridge University Press:  08 April 2016

Adrian L. Melott
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045. E-mail: [email protected]
Richard K. Bambach
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, MRC 121, Washington, D.C. 20013-7012. E-mail: [email protected]

Abstract

We use Fourier analysis and related techniques to investigate the question of periodicities in fossil biodiversity. These techniques are able to identify cycles superimposed on the long-term trends of the Phanerozoic. We review prior results and analyze data previously reduced and published. Joint time-series analysis of various reductions of the Sepkoski Data, Paleobiology Database, and Fossil Record 2 indicate the same periodicity in biodiversity of marine animals at 62 Myr. We have not found this periodicity in the terrestrial fossil record. We have found that the signal strength decreases with time because of the accumulation of apparently “resistant” long-lived genera. The existence of a 62-Myr periodicity despite very different treatment of systematic error, particularly sampling-strength biases, in all three major databases strongly argues for its reality in the fossil record.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2008. Colloquium Paper: Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA. www.pnas.org/cgi/doi/10.1073/pnas.0802597105.CrossRefGoogle Scholar
Alroy, J., et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Bailer-Jones, C. L. I. 2009. The evidence for and against astronomical impacts on climate change and mass extinctions: a review. International Journal of Astrobiology 8:213219.CrossRefGoogle Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.CrossRefGoogle Scholar
Benton, M. J. 1993. The fossil record 2. Chapman and Hall, London.Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258. DOI: 10.1126/science.7701342 CrossRefGoogle ScholarPubMed
Bloomfield, P. 2000. Fourier analysis of time series. Wiley, New York.CrossRefGoogle Scholar
Brigham, F. O. 1988. The Fast Fourier Transform and its applications. Prentice Hall facsimile ed., Englewood Cliffs, N.J. Google Scholar
Cooley, J. W., and Tukey, J. W. 1965. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation 19:297301.CrossRefGoogle Scholar
Cornette, J. L. 2007. Gauss-Vanícek and Fourier transform spectral analyses of marine diversity. Computer Science and Engineering 9:6163.CrossRefGoogle Scholar
Gradstein, F., Ogg, J., and Smith, A. 2004. A geologic time scale 2004. Cambridge University Press, New York.CrossRefGoogle Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1989. The biology of mass extinction: a palaeontological view. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 325:357368.Google ScholarPubMed
Kalmar, A., and Currie, D. J. 2010. The completeness of the continental fossil record and its impact on patterns of diversification. Paleobiology 36:5160.CrossRefGoogle Scholar
Lieberman, B. S., and Melott, A. L. 2007. Considering the case for biodiversity cycles: re-examining the evidence for periodicity in the fossil record. PLoS One doi: 10.1371/journal.pone.0000759.CrossRefGoogle Scholar
Lieberman, B. S., and Melott, A. L. 2009. “Whilst this planet has gone cycling on: what role for periodic astronomical phenomena in large scale patterns in the history of life?” In Talent, J., ed. Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time (International Year of Planet Earth Series). Springer, Berlin.Google Scholar
Melott, A. L. 2008. Long-term cycles in the history of life: periodic biodiversity in the Paleobiology Database. PLoS ONE arXiv: 0807.4729 CrossRefGoogle Scholar
Miller, A. I. 1997. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician Radiation. Paleobiology 23:410419.CrossRefGoogle Scholar
Muller, R. A., and MacDonald, G. J. 2002. Ice ages and astronomical causes, Chapter 3. Springer, New York.Google Scholar
Omerbashich, M. 2006. A Gauss-Vanícek spectral analysis of the Sepkoski compendium: no new life cycles. Computer Science and Engineering 8:2630.CrossRefGoogle Scholar
Press, W., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2007. Numerical recipes: the art of scientific computing, 3d ed. Cambridge University Press, New York.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences USA 81:801805.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1986. Periodic extinction of families and genera. Science 231:833836.CrossRefGoogle ScholarPubMed
Rohde, R. A., and Muller, R. A. 2005. Cycles in fossil diversity. Nature 434:208210.CrossRefGoogle ScholarPubMed
Scargle, J. D. 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal 263:835853.CrossRefGoogle Scholar
Scargle, J. D. 1989. Studies in astronomical time series analysis. III. Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophysical Journal 343:874887.CrossRefGoogle Scholar
Schulz, M., and Stattegger, K. 1997. Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Computers and Geosciences 23:929945.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363.Google Scholar
Sole, R., Manrubia, S. C., Benton, M., and Bak, P. 1997. Self-similarity of extinction statistics in the fossil record. Nature 388:764767.CrossRefGoogle Scholar
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology Memoir 4. Paleobiology 33(Suppl. to No. 4):155.Google Scholar
Stopher, P. R. 1975. Goodness-of-fit measures for probabilistic travel demand models. Transportation 4:6783.CrossRefGoogle Scholar
Supplementary material: PDF

Melott and Bambach supplementary material

Supplementary Material

Download Melott and Bambach supplementary material(PDF)
PDF 228.7 KB