Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T22:48:58.809Z Has data issue: false hasContentIssue false

The taphonomy of Maastrichtian inoceramids in the Basque region of France and Spain and the pattern of their decline and disappearance

Published online by Cambridge University Press:  08 February 2016

Kenneth G. MacLeod
Affiliation:
Department of Geological Sciences, AJ-20, University of Washington, Seattle, Washington 98195
William N. Orr
Affiliation:
Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403

Abstract

After having been very abundant in the Early Maastrichtian Globotruncana gansseri zone, Inoceramus remains disappear from five stratigraphic sections in the Basque region of France and Spain in the lower Abathomphalus mayaroensis zone, ~2.5 m.y. before the Cretaceous–Tertiary boundary. Several lines of evidence demonstrate that these shell fragments are preserved in place and accurately record the pattern of the decline and disappearance of the group. The dominant taphonomic process seems to have been passive disaggregation of the shell as shell proteins decayed. The resulting shell fragments were dispersed only locally by burrowing organisms. Shell fragments decline in abundance over tens of meters of section and there are subtle differences between sections which suggests Inoceramus was eliminated by gradual changes in ecological conditions that affected the basin roughly simultaneously but with some geographic variability.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barron, E. J., Saltzman, E., and Price, D. A. 1984. Occurrence of Inoceramus in the South Atlantic and oxygen isotopic paleotemperatures in Hole 530A. Pp. 893904in Hay, W. W., Sibuet, J.-C. et al., eds. Initial reports of the Deep Sea Drilling Project, Vol. 75. U.S. Government Printing Office, Washington, D.C.Google Scholar
Burnett, J. A., Kennedy, W. J., and Ward, P. D. 1992. Maastrichtian nannofossil biostratigraphy in the Biscay region (southwestern France, northern Spain). Newsletters on Stratigraphy 26:145155.CrossRefGoogle Scholar
Clauser, S. 1987. Èvolution de la composition isotopique de l'oxygène des carbonates durant le Campanien–Maastrichtien, Données préliminaires issues de la série de Bidart (Pyrénées-Atlantiques). Comptes Rendus des l'Academie des Sciences, serie II 304:579584.Google Scholar
Clemens, W. A. 1986. Evolution of the terrestrial vertebrate fauna during the Cretaceous–Tertiary transition. Pp. 6385in Elliot, D. K., ed. Dynamics of extinction. John Wiley and Sons, New York.Google Scholar
Dhondt, A. V. 1983. Campanian and Maastrichtian inoceramids: a review. Zitteliana 10:689701.Google Scholar
Hu, X., Wang, Y. L., and Schmitt, R. A. 1988. Geochemistry of sediments on the Rio Grande Rise and the redox evolution of the South Atlantic Ocean. Geochimica et Cosmochimica Acta 52:201207.CrossRefGoogle Scholar
Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker, E. M., and Weissman, P. R. 1987. Comet showers as a cause of mass extinctions. Nature (London) 329:118125.CrossRefGoogle Scholar
Johnson, K. R., and Hickey, L. J. 1990. Megafloral change across the Cretaceous/Tertiary boundary in the northern Great Plains and Rocky Mountains, U.S.A. Pp. 445455in Sharpton and Ward. 1990.CrossRefGoogle Scholar
Kauffman, E. G. 1972. Ptychodus predation upon a Cretaceous Inoceramus. Paleontology 15:439444.Google Scholar
Kauffman, E. G. 1986. High-resolution event stratigraphy: regional and global bio-events. Pp. 279335in Walliser, O., ed. Global bio-events, lecture notes in Earth sciences, Vol. 8. Springer, Berlin.Google Scholar
Kauffman, E. G. 1988. The dynamics of marine stepwise mass extinction. Pp. 5771in Lamolda, M. A., Kauffman, E. G., and Walliser, O. H., eds. Revista española de paleontología, no. extraordinario, paleontology and evolution: extinction events. Sociedad Espanola de Paleontologia, Madrid.Google Scholar
Kent, D. V., and Gradstein, F. M. 1985. A Cretaceous and Jurassic geochronology. Geological Society of America Bulletin 96:14191427.2.0.CO;2>CrossRefGoogle Scholar
MacLeod, K. G. In revision. Maastrichtian inoceramids from the Bay of Biscay region of France and Spain. Journal of Paleontology.Google Scholar
MacLeod, K. G., and Hoppe, K. A. 1992. Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts. Geology 20:117120.2.3.CO;2>CrossRefGoogle Scholar
MacLeod, K. G., and Ward, P. D. 1990. Extinction pattern of Inoceramus (Bivalvia) based on shell fragment biostratigraphy. Pp. 509518in Sharpton and Ward. 1990.Google Scholar
Mary, C., Moreau, M.-G., Orue-Etxebarria, X., Apellaniz, E., and Courtillot, V. 1991. Biostratigraphy and magnetostratigraphy of the Cretaceous/Tertiary Sopelana section (Basque country). Earth and Planetary Science Letters 106:133150.CrossRefGoogle Scholar
Mathey, B. 1982. El Cretacio superior del Arco Vasco, El Cretacio de Espana, thesis Universidad Complutense de Madrid, pp. 111136.Google Scholar
Meldahl, K. H. 1990. Sampling, species abundance, and the stratigraphic signature of mass extinction: a test using tidal flat molluscs. Geology 18:890893.2.3.CO;2>CrossRefGoogle Scholar
Mount, J. F., and Ward, P. 1986. Origin of Limestone marl alternations in the Upper Maastrichtian of Zumaya, Spain. Journal of Sedimentary Petrology 56:228236.CrossRefGoogle Scholar
Mount, J. F., Margolis, S. V., Showers, W., Ward, P., and Doehne, E. 1986. Carbon and oxygen isotope stratigraphy of the Upper Maastrichtian, Zumaya, Spain: a record of oceanographic and biologic changes at the end of the Cretaceous Period. Palaios 1:8792.CrossRefGoogle Scholar
Nelson, B. K., MacLeod, K. G., and Ward, P. D. 1991. Rapid change in the strontium isotopic composition of seawater prior to the Cretaceous/Tertiary boundary. Nature (London) 351:644647.CrossRefGoogle Scholar
Saltzman, E. S., and Barron, E. J. 1982. Deep circulation in the Late Cretaceous: oxygen isotope paleotemperatures from Inoceramus remains in DSDP cores. Palaeogeography, Palaeoclimatology, Palaeoecology 40:167181.CrossRefGoogle Scholar
Savrda, C. E., and Bottjer, D. J. 1989. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 74:4974.CrossRefGoogle Scholar
Sharpton, V. L., and Ward, P. D. 1990. Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247.Google Scholar
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Pp. 291296in Silver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America Special Paper 190.CrossRefGoogle Scholar
Spicer, R. A., and Parrish, J. T. 1990. Latest Cretaceous woods of the central North Slope, Alaska. Palaeontology 33:225242.Google Scholar
Stanley, S. 1987. Extinction. W. H. Freeman, New York.Google Scholar
Thiede, J., and Dinkelman, M. G. 1977. Occurrence of Inoceramus remains in late Mesozoic pelagic and hemipelagic sediments. Pp. 899910in Supko, P. R., Perch-Nielson, K. et al., eds. Initial reports of the Deep Sea Drilling Project, Vol. 39. U.S. Government Printing Office, Washington, D.C.Google Scholar
Thomas, E. 1990. Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica): ODP leg 113 holes 689B and 690C. Pp. 571594in Barker, P. F., Kennett, J. P. et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 113. U.S. Government Printing Office, Washington, D.C.Google Scholar
Wang, Y. L., Liu, Y.-G., and Schmitt, R. A. 1986. Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My. Geochimica et Cosmochimica Acta 51:631644.Google Scholar
Ward, P. D. 1988. Maastrichtian ammonite and inoceramid ranges from Bay of Biscay Cretaceous–Tertiary boundary sections. Pp. 119126in Lamolda, M. A., Kauffman, E. G., and Walliser, O. H., eds. Revista española de paleontología, no. extraordinario, paleontology and evolution: extinction events. Sociedad Espanola de Paleontologia, Madrid.Google Scholar
Ward, P. D. 1990. The Cretaceous/Tertiary extinctions in the marine realm: a 1990 perspective Pp. 425432in Sharpton and Ward. 1990.Google Scholar
Ward, P. D., and Kennedy, W. J. In press. Maastrichtian ammonites from the Biscay region. Journal of Paleontology Memoir.Google Scholar
Ward, P. D., Kennedy, W. J., MacLeod, K. G., and Mount, J. 1991. End-Cretaceous molluscan extinction patterns in Bay of Biscay K/T boundary sections: two different patterns. Geology 19:11811184.2.3.CO;2>CrossRefGoogle Scholar