Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T07:20:33.209Z Has data issue: false hasContentIssue false

Substrate adaptations of sessile benthic metazoans during the Cambrian radiation

Published online by Cambridge University Press:  23 February 2015

Tristan J. Kloss
Affiliation:
Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, U.S.A. E-mail: [email protected]
Stephen Q. Dornbos
Affiliation:
Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, U.S.A. and Geology Department, Milwaukee Public Museum, Milwaukee, Wisconsin 53233, U.S.A. E-mail: [email protected]
Junyuan Chen
Affiliation:
Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing 210008, China and Institute of Evolution and Developmental Biology, Nanjing University, Nanjing 210093, China

Abstract

Many marine benthic metazoans must stabilize themselves upon the seafloor for survival, and as a result their morphologies are controlled in part by local substrate conditions. The Agronomic Revolution (AR), spurred by increasing vertical bioturbation during the Ediacaran–Cambrian transition, permanently altered the nature of shallow marine substrate conditions and led to a major shift in adaptive strategies among benthic metazoans. These ecological and evolutionary changes, known as the Cambrian Substrate Revolution (CSR), are generally understood from observations of benthic metazoan fossils across the Ediacaran/Cambrian boundary, but the timing and geographic extent of this transition are less well known. This analysis attempts to constrain the temporal and spatial pattern of the AR and CSR by performing a global-scale paleoecological analysis of the adaptive strategies of benthic fauna living during the Cambrian. This analysis focused on Burgess Shale-type (BST) faunas because of their exceptional preservation, and was conducted through direct observation of fossil specimens, analysis of data compiled from the Paleobiology Database, and literature review. From these analyses, faunal groups are assigned a metric, the Substrate Adaptability Index (SAI), that relates the overall affinity the fauna demonstrates toward either Proterozoic-style (SAI=0) or Phanerozoic-style (SAI=1) substrate conditions. The results of this analysis demonstrate that most early and middle Cambrian faunas were mixtures of Phanerozoic- and Proterozoic-style adaptive strategists, suggesting that Proterozoic-style substrates were still influential in controlling adaptive strategies in marine environments until at least that time. This is further supported by ichnofabric analysis of many of these localities, where overall bioturbation levels are exceedingly low, indicating a lack of mixed-layer development and the prevalence of firm Proterozoic-style substrates well into the Cambrian.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Atkins, C. J., and Peel, J. S. 2008. Yochelcionella (Mollusca, Helcionelloida) from the lower Cambrian of North America. Bulletin of Geosciences 83:2338.Google Scholar
Babcock, L. E., Zhang, W., and Leslie, S. A. 2001. The Chengjiang biota; record of the Cambrian diversification of life and clues to exceptional preservation of fossils. GSA Today 11(2):49.2.0.CO;2>CrossRefGoogle Scholar
Bengtson, S. 2009. Burgess Shale Chancelloriids: a prickly problem. P. 20in M. R. Smith, L. O’Brien, and J. B. Caron, eds. International Conference on the Cambrian Explosion, Abstract Volume. Burgess Shale Consortium, Toronto.Google Scholar
Berg-Madsen, V., and Peel, J. S. 1994. A tergomyan mollusk from the upper Cambrian of Wales. Paleontology 37:505512.Google Scholar
Bottjer, D. J., Droser, M. L., and Jablonski, D. J. 1988. Paleoenvironmental trends in the history of trace fossils. Nature 333:252255.Google Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today 10(9): 17.Google Scholar
Brett, C. E., Allison, P. A., DeSantis, M. K., Liddell, W. D., and Kramer, A. 2009. Sequence stratigraphy, cyclic facies, and Lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 277:933.Google Scholar
Buatois, L. A., and Mangano, M. G. 2011. The deja vu effect: recurrent patterns in exploitation of ecospace, establishment of the mixed layer, and distribution of matgrounds. Geology 39:11631166.Google Scholar
Buatois, L. A., Narbonne, G. M., Mángano, M. G., Carmona, N. B., and Myrow, P. 2014. Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications 5:3544.Google Scholar
Caron, J. B., and Jackson, D. A. 2006. Taphonomy of the Greater Phyllopod Bed community, Burgess Shale. Palaios 21:451465.Google Scholar
Clapham, M. E., and Narbonne, G. M. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Conway Morris, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London B 307:507586.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Paleontology 29:423467.Google Scholar
Domke, K. L., and Dornbos, S. Q. 2010. Paleoecology of the middle Cambrian edrioasteroid echinoderm Totiglobus: implications for unusual Cambrian morphologies. Palaios 25:209214.Google Scholar
Dornbos, S. Q. 2006. Evolutionary palaeoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology 237:225239.Google Scholar
Dornbos, S. Q., and Bottjer, D. J. 2000. Evolutionary paleoecology of the earliest echinoderms: helicoplacoids and the Cambrian substrate revolution. Geology 28:839842.Google Scholar
Dornbos, S. Q., and Bottjer, D. J.. 2001. Taphonomy and environmental distribution of helicoplacoid echinoderms. Palaios 16:197204.Google Scholar
Dornbos, S. Q., Bottjer, D. J., and Chen, J. Y. 2005. Paleoecology of benthic metazoans in the early Cambrian Maotianshan Shale biota and the middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology 220:4767.Google Scholar
Doyle, P., Mather, A. E., Bennett, M. R., and Bussell, M. A. 1996. Miocene barnacle assemblages from southern Spain and their palaeoenvironmental significance. Lethaia 29:267274.Google Scholar
Droser, M. L., and Bottjer, D. J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Research 56:558559.Google Scholar
Droser, M. L., Jensen, S., Gehling, J. G., Myrow, P. M., and Narbonne, G. M. 2002. Lowermost Cambrian ichnofabrics from the Chapel Island Formation, Newfoundland: implications for Cambrian substrates. Palaios 17:315.Google Scholar
Durham, J. W. 1966. Camptostroma, an Early Cambrian supposed scyphozoan, referable to Echinodermata. Journal of Paleontology 40:12161220.Google Scholar
Ekdale, A. A., and Mason, T. R. 1988. Characteristic trace-fossil associations in oxygen-poor sedimentary environments. Geology 8:720723.Google Scholar
English, A. M., and Babcock, L. E. 2010. Census of the Indian Springs Lagerstätte, Poleta Formation (Cambrian), western Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 295:236244.Google Scholar
Evans, S. 1998. Wood-boring bivalves and boring linings. Bulletin of the Geological Society of Denmark 45:130134.CrossRefGoogle Scholar
Frey, R. W., Pemberton, S. G., and Saunder, T. D. A. 1990. Ichnofacies and bathymetry: a passive relationship. Journal of Paleontology 64:155158.Google Scholar
Halgedahl, S. L., Jarrard, R. D., Brett, C. E., and Allison, P. A. 2009. Geophysical and geological signatures of relative sea level change in the upper Wheeler Formation, Drum Mountains, West-Central Utah: a perspective into exceptional preservation of fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 277:3456.Google Scholar
Jablonski, D. J., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.Google Scholar
Jensen, S., Droser, M. L., and Gehling, J. G. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology 220:1929.Google Scholar
Kleemann, K. 1996. Biocorrosion by bivalves. Marine Ecology 17:145158.Google Scholar
Kloss, T. J., Dornbos, S. Q., and Chen, J. Y. 2009. Paleoecology and taphonomy of the early Cambrian Maotianshan Shale biota chancelloriid Allonnia junyuani: adaptation to nonactualistic Cambrian substrates. Palaeogeography, Palaeoclimatology, Palaeoecology 277:149157.Google Scholar
Liddell, W. D., Wright, S. H., and Brett, C. E. 1997. Sequence stratigraphy and paleoecology of the Middle Cambrian Spence Shale in northern Utah and southern Idaho. Geology Studies 42:5978.Google Scholar
Liu, H. P., McKay, R. M., Young, J. N., Witzke, B. J., and McVey, K. J. 2006. A new Lagerstätte from the Middle Ordovician St. Peter Formation in northeast Iowa, USA. Geology 34:969972.Google Scholar
McKirdy, D. M., Hall, P. A., Nedin, C., Halverson, G. P., Michaelson, B. H., Jago, J. B., Gehling, J. G., and Jenkins, R. J. F. 2011. Paleoredox status and thermal alteration of the lower Cambrian (Series 2) Emu Bay Shale Lagerstätte, South Australia. Australian Journal of Earth Sciences 58:259272.Google Scholar
Milligan, K. L. D., and Dewreede, R. E. 2000. Variations in holdfast attachment mechanics with developmental stage, substratum-type, season, and wave-exposure for the intertidal kelp species Hedophyllum sessile (C. Agardh) Setchell. Journal of Experimental Marine Biology and Ecology 254:189209.Google Scholar
Narbonne, G. 1998. The Ediacara biota: a terminal Neoproterozoic experiment in the evolution of life. GSA Today 8:16.Google Scholar
Parkhaev, P. Y. 2000. The functional morphology of the Cambrian univalved mollusks-helcionellids. Paleontologicheskii Zhurnal 5:2026.Google Scholar
Parsley, R. L., and Prokop, R. J. 2004. Functional morphology and paleoecology of some sessile middle Cambrian echinoderms from the Barrandian region of Bohemia. Bulletin of Geosciences 79:147156.Google Scholar
Powell, W. G., Johnston, P. A., and Collom, C. J. 2003. Geochemical evidence from oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 201:249268.Google Scholar
Rees, M. N. 1986. A fault-controlled trough through a carbonate platform; the Middle Cambrian House Range Embayment. Geological Society of America Bulletin 97:10541069.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: examples from four Utah Lagerstätten. Pp. 7798in A. M. Simonetta and S. Conway Morris. eds. The early evolution of metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge.Google Scholar
Schieber, J. 1999. Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios 14:312.Google Scholar
Schlottke, M. T., and Dornbos, S. Q. 2007. Paleoecology of the middle Cambrian eocrinoid echinoderm Gogia spiralis: Possible changes in substrate adaptations through ontogeny. Geological Society of America Abstracts with Program 39(6):333.Google Scholar
Seilacher, A., and Macclintock, C. 2005. Crinoid anchoring strategies for soft-bottom dwelling. Palaios 20:224240.Google Scholar
Seilacher, A., and Pflüger, F. 1994. From biomats to benthic agriculture: a biohistoric revolution. Pp. 97105in W. E. Krumbein et al. eds., Biostabilization of sediments. Bibliotheks und Informations-system der Carl von Ossietzky Universitat Oldenburg (BIS), Oldenburg, Germany.Google Scholar
Seilacher, A., Buatois, L. A., and Mangano, M. G. 2005. Trace fossils in the Ediacaran-Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology 227:323356.Google Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Museum of Comparative Zoology. Harvard University, Special Publication 283.Google Scholar
Tarhan, L. G., and Droser, M. L. 2014. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeography, Palaeoclimatology, Palaeoecology 399:310322.Google Scholar
Tarhan, L. G., Droser, M. L., and Gehling, J. G. 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios 25:823830.Google Scholar
Thayer, C. W. 1975. Morphologic adaptations of benthic invertebrates to soft substrata. Journal of Marine Research 33:177189.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625in M. J. S. Tevesz and P. L. McCall, eds. Biotic interactions in Recent and fossil communities. Plenum, New York.Google Scholar
Whittington, H. B. 1985. The Burgess Shale. Yale University Press, New Haven, Conn.Google Scholar
Wilby, P. R., Carney, J. N., and Howe, M. P. A. 2011. A rich Ediacaran assemblage from eastern Avalonia: evidence of early widespread diversity in the deep ocean. Geology 39:655658.Google Scholar