Article contents
Species richness in the Phanerozoic: an investigation of sampling effects
Published online by Cambridge University Press: 08 April 2016
Abstract
Given estimates of the variation in total standing species richness through the periods of the Phanerozoic, mean species duration, and the relative intensity of the sampling of the fauna from each of the periods, the expected number of described species can be predicted for each period of the Phanerozoic using an analytic sampling model. This model is based on the assumption that the relative abundances of species in any geologic period can be approximated by the canonical (lognormal) species-abundance distribution.
Three commonly cited models of standing species richness (Valentine, 1973; Gould et al., 1977; Bambach, 1977) each suggest different patterns of species richness in the Phanerozoic. By assuming that sampling of the fossil record is proportionate to sediment volume, it can be shown with the sampling model that the Empirical, Equilibrium, and Species-Richness Models each predict that the number of described species will be strongly correlated with sediment volume. Equally high correlations are predicted if it is assumed that sampling is proportionate to sediment area or to paleontological interest. The correlations predicted for each of the three models are remarkably similar. The impact of sampling effects is so strong that the variations in species richness postulated by these three models are almost completely obscured. Preservational biases will probably only further obscure the relationship between the number of described species and total species richness. Therefore, it seems likely that analysis of trends in the total number of described species will be of little use in determining trends in worldwide species richness in the Phanerozoic.
Comparison of the actual patterns of variation in the number of described species and the expected numbers of described species predicted by the sampling model reveals that more species are known from the Cenozoic than would be predicted from the abundance of Cenozoic sediments or from the amount of paleontological interest in the Cenozoic. This might have resulted from the Cenozoic sediments remaining relatively free of diagenetic effects which might have destroyed the fossils entombed in the sediments.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Paleontological Society
References
Literature Cited
- 24
- Cited by