Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T12:27:46.223Z Has data issue: false hasContentIssue false

Species in the fossil record: concepts, trends, and transitions

Published online by Cambridge University Press:  08 April 2016

Philip D. Gingerich*
Affiliation:
Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109

Abstract

Morphological continuity in the fossil record is the principal evidence favoring evolution as a historical explanation for the diversity of life. Continuity is usually discussed on scales broader than the species level. Patterns of morphological variation characteristic of living species are useful in recognizing species on time planes in the fossil record, but the fossil record is rarely complete enough temporally or geographically to preserve more than a fraction of species living in a given interval. Transitions between known species are even rarer. Where transitions are preserved, new species appear to arise through anagenesis (transformation of an ancestral stock producing a modified descendant) and through cladogenesis (subdivision of an ancestral lineage where one or more descendants differ from the ancestral stock). Evolutionary species are often necessarily bounded arbitrarily in the dimension of time.

Orthogenesis and punctuated equilibrium lie at opposite poles in a spectrum of speciation modes. Orthogenesis, highly constrained anagenesis, is probably rare. Cladogenesis appears to differ little from anagenesis once ancestral stocks are segregated. Limited evidence suggests that morphological differentiation during cladogenesis postdates genetic isolation. Hence punctuated equilibrium may be rare as well. Patterns of gradual change over time indicate that morphological evolution is reasonably viewed as continuous within and between species. Rates of evolution vary greatly (continuity does not require constancy). Rate distributions are truncated and biased by limits of stratigraphic completeness and time resolution: moderate to high rates of morphological evolution and species turnover are rarely recorded by fossils. Species durations are poorly characterized, but they appear to be so variable that there is no suggestion of periodicity. Species longevity is unpredictable. The episodic nature of faunal turnover suggests that extrinsic environmental factors rather than intrinsic homeostatic factors govern evolution at the species level.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology. 9:390397.CrossRefGoogle Scholar
Avise, J. C. 1977. Genic heterozygosity and rate of speciation. Paleobiology. 3:422432.CrossRefGoogle Scholar
Bell, M. A. and Haglund, T. R. 1982. Fine-scale temporal variation of the Miocene stickleback Gasterosteus doryssus. Paleobiology. 8:282292.CrossRefGoogle Scholar
Behrensmeyer, A. K. 1982. Time resolution in fluvial vertebrate assemblages. Paleobiology. 8:211227.Google Scholar
Bookstein, F. L., Gingerich, P. D., and Kluge, A. G. 1978. Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology. 4:120134.CrossRefGoogle Scholar
Burkhardt, R. W. 1981. Species. Pp. 395396. In: Bynum, W. F., Browne, E. J., and Porter, R., eds. Dictionary of the History of Science. Princeton Univ. Press; Princeton, N.J.Google Scholar
Chaline, J., ed. 1983. Modalités, Rhythmes, Mécanismes de l'Evolution Biologique. 335 pp. Colloq. Internat. Cent. Nat. Res. Sci. 330. Editions Cent. Nat. Rech. Scient.; Paris.Google Scholar
Charlesworth, B., Lande, R., and Slatkin, M. 1982. A neo-Darwinian commentary on macroevolution. Evolution. 36:474498.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. 513 pp. John Murray; London.Google Scholar
Davis, S. J. M. 1983. The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology. 7:101114.Google Scholar
Dingus, L. and Sadler, P. M. 1982. The effects of stratigraphic completeness on estimates of evolutionary rates. Syst. Zool. 31:400412.CrossRefGoogle Scholar
Dobzhansky, T. 1935. A critique of the species concept in biology. Philos. Sci. 2:344355.CrossRefGoogle Scholar
Dobzhansky, T. 1937. Genetics and the Origin of Species. 364 pp. Columbia Univ. Press; New York.Google Scholar
Eldredge, N. 1971. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution. 25:156167.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper; San Francisco.Google Scholar
Fagerstrom, J. A. 1978. Modes of evolution and their chronostratigraphic significance: evidence from Devonian invertebrates in the Michigan Basin. Paleobiology. 4:381393.CrossRefGoogle Scholar
Fitch, W. M. 1982. The challenges to Darwinism since the last centennial and the impact of molecular studies. Evolution. 36:11331143.CrossRefGoogle ScholarPubMed
Flessa, K. W. and Bray, R. G. 1977. On the measurement of size-independent morphological variability: an example using successive populations of a Devonian spiriferid brachiopod. Paleobiology. 3:350359.Google Scholar
Ghiselin, M. T. 1974. A radical solution to the species problem. Syst. Zool. 23:536544.Google Scholar
Gingerich, P. D. 1974. Stratigraphic record of early Eocene Hyopsodus and the geometry of mammalian phylogeny. Nature. 248:107109.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. Am. J. Sci. 276:128.Google Scholar
Gingerich, P. D. 1980. Evolutionary patterns in early Cenozoic mammals. Ann. Rev. Earth Planet. Sci. 8:407424.Google Scholar
Gingerich, P. D. 1981. Variation, sexual dimorphism, and social structure in the early Eocene horse Hyracotherium. Paleobiology. 7:443455.CrossRefGoogle Scholar
Gingerich, P. D. 1982. Time resolution in mammalian evolution: sampling, lineages, and faunal turnover. Proc. 3d N. Am. Paleontol. Conv. 1:205210.Google Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science. 222:159161.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1984. Punctuated equilibria—where is the evidence? Syst. Zool. 33:335338.Google Scholar
Gingerich, P. D., Rose, K. D., and Krause, D. W. 1980. Early Cenozoic mammalian faunas of the Clark's Fork Basin-Polecat Bench area, northwestern Wyoming. Univ. Michigan Pap. Paleontol. 24:5168.Google Scholar
Gould, S. J. 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Pp. 83104. In: Milkman, R., ed. Perspectives on Evolution. Sinauer; Sunderland, Mass.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.Google Scholar
Haldane, J. B. S. 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution. 3:5156.Google Scholar
Hallam, A. 1978. How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves. Paleobiology. 4:1625.CrossRefGoogle Scholar
Hallam, A. 1982. Patterns of speciation in Jurassic Gryphaea. Paleobiology. 8:354366.CrossRefGoogle Scholar
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology. 6:193207.CrossRefGoogle Scholar
Hayami, I. 1978. Notes on the rates and patterns of size change in evolution. Paleobiology. 4:252260.Google Scholar
Hays, J. D. 1970. The stratigraphy and evolutionary trends of Radiolaria in North Pacific deep-sea sediments. Geol. Soc. Am. Mem. 126:186218.Google Scholar
Hoffman, A. 1982. Punctuated versus gradual mode of evolution, a reconsideration. Evol. Biol. 15:411436.CrossRefGoogle Scholar
Hull, D. L. 1976. Are species really individuals? Syst. Zool. 25:174191.Google Scholar
Huxley, A. 1982. Anniversary address 1981. Proc. Roy. Soc. Lond. 379A:iv–xx.Google Scholar
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology. 1:359370.Google Scholar
Kellogg, D. E. 1976. Character displacement in the radiolarian genus Eucyrtidium. Evolution. 29:736749.Google Scholar
Kellogg, D. E. 1983. Phenology of morphologic change in radiolarian lineages from deep-sea cores: implications for macroevolution. Paleobiology. 9:355362.Google Scholar
Kellogg, D. E. and Hays, J. D. 1975. Microevolutionary patterns in late Cenozoic Radiolaria. Paleobiology. 1:150160.Google Scholar
Koch, C. F. 1984. Bivalve species duration, areal extent and population size in a Cretaceous sea. Paleobiology. 6:184192.Google Scholar
Levinton, J. S. 1983. Stasis in progress: the empirical basis of macroevolution. Ann. Rev. Ecol. Syst. 14:103137.Google Scholar
Levinton, J. S. and Simon, C. M. 1980. A critique of the punctuated equilibria model and implications for the detection of speciation in the fossil record. Syst. Zool. 29:130142.CrossRefGoogle Scholar
Linnaeus, C. 1758. Systema Naturae. 10th ed.Laurentii Salvii; Stockholm.Google Scholar
Lohmann, G. P. and Malmgren, B. A. 1983. Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the late Pleistocene: gradual evolution or ocean change? Paleobiology. 9:414421.Google Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology. 9:377389.Google Scholar
Malmgren, B. A. and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage: DSDP site 284, southwest Pacific. Paleobiology. 7:230240.CrossRefGoogle Scholar
Malmgren, B. A. and Kennett, J. P. 1983. Gradual evolution in a planktonic foraminiferal lineage reconsidered. Phyletic gradualism in the Globorotalia inflata lineage vindicated. Paleobiology. 9:427428.Google Scholar
Mayr, E. 1940. Speciation phenomena in birds. Amer. Nat. 74:249278.Google Scholar
Mayr, E. 1942. Systematics and the Origin of Species. 334 pp. Columbia Univ. Press; New York.Google Scholar
Mayr, E. 1969. The biological meaning of species. Biol. J. Linn. Soc. London. 1:311320.Google Scholar
Mayr, E. 1982. Speciation and macroevolution. Evolution. 36:11191132.Google Scholar
Newell, N. D. 1956. Fossil populations. Publ. Syst. Assoc. London. 2:6381.Google Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology. 4:115.Google Scholar
Raup, D. M. and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology. 7:200215.Google Scholar
Ray, J. 1686. Historia Plantarum. I. 983 pp. London.Google Scholar
Rensch, B. 1947. Neuere Probleme der Abstammungslehre, die transspezifische Evolution. 407 pp. F. Enke; Stuttgart.Google Scholar
Rensch, B. 1959. Evolution above the Species Level. 419 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Retallack, G. 1984. Completeness of the rock and fossil record: some estimates using fossil soils. Paleobiology. 10:5978.Google Scholar
Reyment, R. A. 1982. Analysis of trans-specific evolution in Cretaceous ostracods. Paleobiology. 8:293306.CrossRefGoogle Scholar
Rightmire, G. P. 1981. Patterns in the evolution of Homo erectus. Paleobiology. 7:241246.Google Scholar
Rightmire, G. P. 1982. Evolutionary stasis in Homo erectus? Reply to Levinton. Paleobiology. 8:307308.CrossRefGoogle Scholar
Rose, K. D. 1981. The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ. Michigan Pap. Paleontol. 26:1196.Google Scholar
Rose, K. D. and Bown, T. M. 1984. Gradual phyletic evolution at the generic level in early Eocene omomyid primates. Nature. 309:250252.Google Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89:569584.Google Scholar
Sambol, M. and Finks, R. M. 1977. Natural selection in a Cretaceous oyster. Paleobiology. 3:116.CrossRefGoogle Scholar
Saunders, W. B. and Spinosa, C. 1978. Sexual dimorphism in Nautilus from Palau. Paleobiology. 4:349358.Google Scholar
Schankler, D. M. 1980. Faunal zonation of the Willwood Formation in the central Bighorn Basin, Wyoming. Univ. Michigan Pap. Paleontol. 24:99114.Google Scholar
Schankler, D. M. 1981. Local extinction and ecological re-entry of early Eocene mammals. Nature. 293:135138.Google Scholar
Schindel, D. E. 1980. Microstratigraphic sampling and the limits of paleontologic resolution. Paleobiology. 6:408426.Google Scholar
Schindel, D. E. 1982. Resolution analysis: a new approach to the gaps in the fossil record. Paleobiology. 8:340353.CrossRefGoogle Scholar
Schindel, D. E. and Gould, S. J. 1977. Biological interaction between fossil species: character displacement in Bermudian land snails. Paleobiology. 3:259269.CrossRefGoogle Scholar
Schopf, T. J. M. 1982. A critical assessment of punctuated equilibria. I. Duration of taxa. Evolution. 36:11441157.Google Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic versus morphologic rates of evolution: influence of morphologic complexity. Paleobiology. 1:6370.Google Scholar
Simpson, G. G. 1943. Criteria for vertebrate subspecies, species and genera. Ann. New York Acad. Sci. 44:145178.Google Scholar
Stanley, S. M. 1978. Chronospecies' longevities, the origin of genera, and the punctuational model of evolution. Paleobiology. 4:2640.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. W. H. Freeman; San Francisco.Google Scholar
Stanley, S. M. 1982. Macroevolution and the fossil record. Evolution. 36:460473.Google Scholar
Stebbins, G. L. 1982. Perspectives in evolutionary theory. Evolution. 36:11091118.Google Scholar
Tipper, J. C. 1983. Rates of sedimentation and stratigraphic completeness. Nature. 302:696698.Google Scholar
Van Valen, L. 1976. Ecological species, multispecies, and oaks. Taxon. 25:233239.Google Scholar
Ward, P., Stone, R., Westermann, G., and Martin, A. 1977. Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of the cephalopod Nautilus pompilius. Paleobiology. 3:377388.Google Scholar
West, R. M. 1979. Apparent prolonged evolutionary stasis in the primitive Eocene hoofed mammal Hyopsodus. Paleobiology. 5:252260.Google Scholar
Wiley, E. O. 1978. The evolutionary species concept reconsidered. Syst. Zool. 27:1726.Google Scholar
Williamson, P. G. 1981. Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature. 293:437443.Google Scholar
Wolpoff, M. H. 1984. Evolution in Homo erectus: the question of stasis. Paleobiology. 10:389406.Google Scholar
Wright, S. 1982. Character change, speciation, and the higher taxa. Evolution. 36:427443.Google Scholar