Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T14:34:18.249Z Has data issue: false hasContentIssue false

Shell form and the ecological range of living and extinct Arcoida

Published online by Cambridge University Press:  08 April 2016

R. D. K. Thomas*
Affiliation:
Department of Geology, Franklin and Marshall College; Lancaster, Pennsylvania 17604

Abstract

Arcoid bivalves occupy an intermediate position, in terms both of morphology and of adaptive range between the Pterioida and the Veneroida. The range and limits of arcoid adaptations are related to the growth patterns of their shells. Both the arcoid hinge and ligament grow by the serial repetition of simple structures, in contrast with the development of more specialized, complex structures in other groups. These simple growth patterns place significant mechanical constraints on the range of possible shell forms. Most arcoids live in moderately unstable environments, where they are liable to be excavated or detached from their substrates. Many employ recovery strategies, being adapted to regain their life positions. However, a variety of specialized forms, convergent on other groups of bivalves, have become adapted to avoid being dislodged in the first place. Thus, intrinsic growth patterns and substrate relationships have been the major factors in the evolution of the Arcoida.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ansell, A. D. and Trueman, E. R. 1967. Observations on burrowing in Glycymeris glycymeris (L.) (Bivalvia, Arcacea). J. Exp. Mar. Biol. Ecol. 1:6575.Google Scholar
Arkell, W. J. 1930. The generic position and phylogeny of some Jurassic Arcidae. Geol. Mag. 67:297310.Google Scholar
Bernard, F. 1896. Deuxième note sur le développement et la morphologie de la coquille chez les lamellibranches. Taxodontes. Bull. Soc. Géol. Fr. (3) 24:5482.Google Scholar
Carriker, M. R. and Yochelson, E. L. 1968. Recent gastropod boreholes and Ordovician cylindrical borings. Prof. Pap. U.S. Geol. Surv. 593-B:126.Google Scholar
Cox, L. R. 1959. The geological history of the Protobranchia and the dual origin of taxodont Lamellibranchia. Proc. Malacol. Soc. Lond. 33:200209.Google Scholar
Dall, W. H. 1895. Contributions to the Tertiary fauna of Florida. Part III, A new classification of the Pelecypoda. Trans. Wagner Free Inst. Sci. Philad. 3:479570.Google Scholar
Douvillé, H. 1913. Classification des lamellibranches. Bull. Soc. Géol. Fr. (4) 12:419467.Google Scholar
Flajs, G. 1972. Die Ultrastruktur des Schlosses der Bivalvia, 1. Akad. Wiss. Lit. Mainz, Biominer. Forsch. 6:4965.Google Scholar
Heath, H. 1941. The anatomy of the pelecypod family Arcidae. Trans. Am. Phil. Soc. (n.s.) 31:287319.Google Scholar
Kauffman, E. G. 1969. Form, function and evolution. Pp. 129205. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia 1. Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Lim, C. F. 1966. A comparative study on the ciliary feeding mechanisms of Anadara species from different habitats. Biol. Bull. Mar. Biol. Lab., Woods Hole. 130:106117.Google Scholar
Newell, N. D. 1937. Late Paleozoic pelecypods: Pectinacea. Publ. Kans. Geol. Surv. 10:1123.Google Scholar
Newell, N. D. 1954. Status of invertebrate paleontology, 1953: V. Mollusca: Pelecypoda. Bull. Mus. Comp. Zool. Harv. 112:161172.Google Scholar
Newell, N. D. 1969. Superfamily Arcacea Lamarck, 1809. Pp. 250269. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia 1. Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Nevesskaya, L. A., Scarlato, O. A., Starobogatov, Ya. I., and Eberzin, A. G. 1971. New ideas on bivalve systematics. Paleontol. J. 5:141155.Google Scholar
Owen, G. 1953. The shell in the Lamellibranchia. Q. J. Microsc. Sci. 94:5770.Google Scholar
Owen, G. 1959. The ligament and digestive system in the taxodont bivalves. Proc. Malacol. Soc. London. 33:215223.Google Scholar
Owen, G., Trueman, E. R., and Yonge, C. M. 1953. The ligament in the Lamellibranchia. Nature, London. 171:7375.CrossRefGoogle ScholarPubMed
Pojeta, J. 1971. Review of Ordovician pelecypods. Prof. Pap. U.S. Geol. Surv. 695:146.Google Scholar
Pojeta, J. and Runnegar, B. 1974. Fordilla troyensis and the early history of pelecypod mollusks. Am. Sci. 62:706711.Google Scholar
Pojeta, J., Runnegar, B. and Kriz, J. 1973. Fordilla troyensis Barrande: the oldest known pelecypod. Science. 180:866868.CrossRefGoogle ScholarPubMed
Purchon, R. D. 1957. The stomach in the Filibranchia and Pseudolamellibranchia. Proc. Zool. Soc. London. 129:2760.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. J. Paleontol. 40:11781190.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstructions-Morphologie. Lethaia. 3:393396.CrossRefGoogle Scholar
Stanley, S. M. 1970. Relation of shell form to life habits in the Bivalvia (Mollusca). Mem. Geol. Soc. Am. 125:1296.Google Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. J. Paleontol. 46:165212.Google Scholar
Stanley, S. M. 1975a. Why clams have the shape they have: an experimental analysis of burrowing. Paleobiology. 1:4858.Google Scholar
Stanley, S. M. 1975b. Adaptive themes in the evolution of the Bivalvia (Mollusca). Annu. Rev. Earth Planet. Sci. 3:361385.Google Scholar
Stasek, C. R. 1963. Geometrical form and gnomonic growth in the bivalved Mollusca. J. Morphol. 112:215231.Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea-Trigonacea. Bull. Brit. Mus. Nat. Hist. (Zool.) Suppl. 3:1125.Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1973. The shell structure and mineralogy of the Bivalvia. II. Lucinacea-Clavagellacea. Conclusions. Bull. Brit. Mus. Nat. Hist. (Zool.) 22:255294.Google Scholar
Tevesz, M. J. 1977. Taxonomy and ecology of the Philobryidae and Limopsidae (Mollusca: Pelecypoda). Peabody Mus. Yale Univ., Postilla. 171:164.Google Scholar
Thomas, R. D. K. 1975. Functional morphology, ecology and evolutionary conservatism in the Glycymerididae (Bivalvia). Palaeontology. 18:217254.Google Scholar
Thomas, R. D. K. 1976. Constraints of ligament growth, form and function on evolution in the Arcoida (Mollusca: Bivalvia). Paleobiology. 2:6483.CrossRefGoogle Scholar
Thomas, R. D. K.In press. Constructional morphology. In: Fairbridge, R. W. and Jablonski, D., eds. The Encyclopedia of Paleontology. Dowden, Hutchinson & Ross; Stroudsburg, Pennsylvania.Google Scholar
Trueman, E. R. 1964. Adaptive morphology in paleoecological interpretation. Pp. 4574. In: Imbrie, J. and Newell, N. D., eds. Approaches to Paleoecology. John Wiley; New York.Google Scholar
Trueman, E. R. 1969. Ligament. Pp. 5864. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia 1. Univ. Kans. Press; Lawrence, Kansas.Google Scholar
Vermeij, G. J. 1970. Adaptive versatility and skeleton construction. Am. Nat. 104:253260.CrossRefGoogle Scholar
Yonge, C. M. 1953. The monomyarian condition in the Lamellibranchia. Trans. R. Soc. Edinb. 62:443478.CrossRefGoogle Scholar
Yonge, C. M. 1955. Adaptation to rock boring in Botula and Lithophaga (Lamellibranchia: Mytilidae) with a discussion on the evolution of the habit. Q. J. Microsc. Sci. 96:383410.Google Scholar
Yonge, C. M. 1962. On the primitive significance of the byssus in the Bivalvia and its effects in evolution. J. Mar. Biol. Assoc. U.K. 42:113125.Google Scholar