Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:39:41.912Z Has data issue: false hasContentIssue false

Selection pressure for high body temperatures: implications for dinosaurs

Published online by Cambridge University Press:  08 February 2016

C. McGowan*
Affiliation:
Department of Vertebrate Palaeontology, Royal Ontario Museum. Toronto, Canada M5S 2C6

Abstract

An understanding of the thermal strategies of extant animals is a prerequisite for any useful discussion on the possible thermal strategies of dinosaurs. Of cardinal importance is the identification of the selection pressures that have resulted in the evolution of high body temperatures. Although different selection pressures have probably been operational in different organisms, enhanced muscle power may have been a prime factor.

Many dinosaurs, including the ornithomimids, carnosaurs and hadrosaurs possess cursorial features suggesting high activity levels, which in turn suggest the possession of high body temperatures. Even if it is denied that high body temperatures are a prerequisite for speed, it cannot be denied that muscular activity liberates large quantities of heat, and most dinosaurs, by virtue of their small area to volume ratio, must have maintained constant, and sometimes high, body temperatures. This thermal strategy, described as inertial homeothermy, does not require a high (mammalian/avian) rate of metabolism, and most dinosaurs were probably not endothermic.

The smallest dinosaurs (e.g. Compsognathus) were probably too small to have been able to maintain constant body temperatures in the absence of external insulation. Perhaps they were feathered, like their close relative Archaeopteryx. Presence of feathers in Archaeopteryx is compelling evidence for endothermy.

The largest dinosaurs, the sauropods, had an exceedingly small area to volume ratio, that probably imposed limitations on their rate of heat dissipation. This in turn may have restricted their rate of muscular activity; there are also sound mechanical reasons why they should have been relatively inactive. It is therefore concluded that sauropods probably maintained relatively low body temperatures.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bakker, R. T. 1971a. The ecology of the brontosaurs. Nature. 229:172174.CrossRefGoogle ScholarPubMed
Bakker, R. T. 1971b. Dinosaur physiology and the origin of mammals. Evolution. 25:636658.CrossRefGoogle Scholar
Bakker, R. T. 1972. Anatomical and ecological evidence of endothermy in dinosaurs. Nature. 238:8185.CrossRefGoogle Scholar
Bakker, R. T. 1974. Experimental and fossil evidence for the evolution of tetrapod bioenergetics. Pp. 365399. In: Gates, D. and Schmerl, R., eds. Symposium on Biophysical Ecology. Univ. Mich.; Ann Arbor, Mich.Google Scholar
Bakker, R. T. and Galton, P. M. 1974. Dinosaur monophyly and a new class of vertebrates. Nature. 248:168172.CrossRefGoogle Scholar
Berman, D. S. and McIntosh, J. S. 1978. Skull and relationships of the Upper Jurassic sauropod Apatosaurus (Reptilia, Saurischia). Bull. Carnegie Mus. 8:535.Google Scholar
Bligh, J. and Johnson, K. G. 1973. Glossary of terms for thermal physiology. J. Applied Physiol. 35:941961.CrossRefGoogle ScholarPubMed
Bock, W. J. 1969. The origin and radiation of birds. Ann. N.Y. Acad. Sci. 167:147155.CrossRefGoogle Scholar
Brattstrom, B. H. 1970. Amphibia. Pp. 135166. In: Whittow, G. C., ed. Comparative Physiology of Thermoregulation (1). Academic Press; New York and London.Google Scholar
Calloway, N. O. 1976. Body temperature: thermodynamics of homeothermism. J. Theor. Biol. 57:331344.CrossRefGoogle ScholarPubMed
Carrington, R. 1958. Elephants. Chatto and Windus; London. 272 pp.Google Scholar
Colbert, E. H. 1962. The weights of dinosaurs. Am. Mus. Novit. 2076:116.Google Scholar
Coombs, W. P. Jr. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. Q. Rev. Biol. 53:393418.CrossRefGoogle Scholar
Crompton, A. W. 1968. The enigma of the evolution of mammals. Optima. 18:138151.Google Scholar
Crompton, A. W., Taylor, C. R., and Jagger, J. A. 1978. Evolution of homeothermy in mammals. Nature. 272:333336.CrossRefGoogle ScholarPubMed
Dawson, T. J. and Hudson, J. W. 1970. Birds. Pp. 223310. In: Whittow, G. C., ed. Comparative Physiology of Thermoregulation (1). Academic Press; New York and London.Google Scholar
Emery, A. R. 1972. Under-ice observations of wintering sites of leopard frogs. Copeia. 1:123126.CrossRefGoogle Scholar
Evart, J. C. 1921. The nestling feathers of the mallard with observations on the composition, origin and history of feathers. Proc. Zool. Soc. London. 1921:609642.Google Scholar
Feduccia, A. 1973. Dinosaurs as reptiles. Evolution. 27:166169.CrossRefGoogle ScholarPubMed
Frair, W., Ackman, R. G., and Mrosovsky, N. 1972. Body temperature of Dermochelys coriacea: warm turtle from cold water. Science. 177:791793.CrossRefGoogle ScholarPubMed
Galton, P. M. 1970. The posture of hadrosaurian dinosaurs. J. Paleontol. 44:464473.Google Scholar
Galton, P. M. 1971. The mode of life of Hypsilophodon the supposedly arboreal ornithopod. Lethaia. 4:453465.CrossRefGoogle Scholar
Hamilton, W. J. III. 1973. Life's Color Code. McGraw-Hill; New York. 238 pp.Google Scholar
Harlow, H. J., Hillman, S. S., and Hoffman, M. 1976. The effect of temperature on digestive efficiency in the herbivorous lizard, Dipsosaurus dorsalis. J. Comp. Physiol. 111:16.CrossRefGoogle Scholar
Heinrich, B. 1970. Thoracic temperature stabilization by blood circulation in a free-flying moth. Science. 168:580582.CrossRefGoogle Scholar
Heinrich, B. 1974. Thermoregulation in endothermic insects. Science. 185:747756.CrossRefGoogle ScholarPubMed
Heinrich, B. 1977. Why have some animals evolved to regulate a high body temperature? Am. Nat. 3:623640.CrossRefGoogle Scholar
Holeton, G. F. 1974. Metabolic cold adaptation of polar fish: fact or artefact? Zool. Physiol. 47:137152.CrossRefGoogle Scholar
Hopson, J. A. 1976. Hot-, Cold- or Lukewarm-blooded Dinosaurs? Paleobiology. 2:271275.CrossRefGoogle Scholar
Hull, D. 1973. Thermoregulation in young mammals. Pp. 167200. In: Whittow, G. C., ed. Comparative Physiology of Thermoregulation (3). Academic Press; New York and London.CrossRefGoogle Scholar
Irving, L. 1966. Adaptations to cold. Sci. Am. 214:94101.CrossRefGoogle ScholarPubMed
Janensch, W. 1935. Die Schädel der Sauropoden Brachiosaurus, Barosaurus und Dicraeosaurus aus den Tendaguru-Schichten Deutsch-Ostafrika. Palaeontogr. Suppl. 7:147248.Google Scholar
Kaye, G. W. C. and Laby, T. H. 1966. Tables of Physical and Chemical Constants. Longman; London. 249 pp.Google Scholar
Mackay, R. S. 1964. Galapagos tortoise and marine iguana deep body temperatures measured by radio telemetry. Nature. 204:355358.CrossRefGoogle ScholarPubMed
McMahon, T. A. 1975. Using body size to understand the structural design of animals: quadrupedal locomotion. J. Appl. Physiol. 39:619627.CrossRefGoogle ScholarPubMed
McNab, B. K. 1966. The metabolism of fossorial rodents: a study of convergence. Ecology. 47:712733.CrossRefGoogle Scholar
McNab, B. K. and Auffenberg, W. 1976. The effect of large body size on the temperature regulation of the Komodo Dragon, Varanus komodoensis. Comp. Biochem. Physiol. 55:345350.CrossRefGoogle ScholarPubMed
Morgareidge, K. R. and White, F. N. 1969. Cutaneous vascular changes during heating and cooling in the Galapagos marine iguana. Nature. 233:587591.CrossRefGoogle Scholar
Neilsen, M. 1970. Heat production and body temperature during rest and work. Pp. 205214. In: Hardy, J. D., Gagge, A. P., and Stolwijk, J.* A. J., eds. Physiological and Behavioral Temperature Regulation. Charles C. Thomas; Springfield, Ill.Google Scholar
Osborn, N. F. 1917. Skeletal adaptations of Ornitholestes, Struthiomimus, Tyrannosaurus. Bull. Am. Mus. Nat. Hist. 35:733771.Google Scholar
Ostrom, J. H. 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bull. Peabody Mus. Nat. Hist. 30:1165.Google Scholar
Ostrom, J. H. 1970. Archaeopteryx: Notice of a “new” specimen. Science. 170:537538.CrossRefGoogle ScholarPubMed
Ostrom, J. H. 1973. The ancestry of birds. Nature. 242:136.CrossRefGoogle Scholar
Ostrom, J. H. 1974. Archaeopteryx and the origin of flight. Q. Rev. Biol. 49:2747.CrossRefGoogle Scholar
Ostrom, J. H. 1976. Archaeopteryx and the origin of birds. J. Linn. Soc. 8:91182.CrossRefGoogle Scholar
Ostrom, J. H. 1978. The osteology of Compsognathus longipes Wagner. Zitteliana Abhandlungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie. 4:73118.Google Scholar
Russell, D. A. 1969. A new specimen of Stenonychosaurus from the Oldman Formation (Cretaceous) of Alberta. Can. J. Earth Sci. 6:595612.CrossRefGoogle Scholar
Russell, L. S. 1965. Body temperature of dinosaurs and its relationships to their extinction. J. Paleontol. 39:497501.Google Scholar
Scholander, P. F. 1955. Evolution of climatic adaptation in homeotherms. Evolution. 9:1526.CrossRefGoogle Scholar
Scholander, P. F., Walters, V., Hock, R., and Irving, L. 1950. Body insulation of some arctic and tropical mammals and birds. Biol. Bull. Mar. Biol. Lab., Wood's Hole. 99:225236.CrossRefGoogle ScholarPubMed
Sikes, S. K. 1971. The Natural History of the African Elephant. Weidenfeld and Nicolson; London. 397 pp.Google Scholar
Somero, G. N. 1969. Enzymic mechanisms of temperature compensation: immediate and evolutionary effects of temperature on enzymes of aquatic poikilotherms. Am. Nat. 103:517530.CrossRefGoogle Scholar
Somero, G. N. 1975. Enzymic mechanisms of eurythermality in desert and esturine fishes: genetics and kinetics. Pp. 168187. In: Hadley, N. F., ed. Environmental Physiology of Desert Organisms. Dowden, Hutchinson and Ross Inc.; Stroudsburg, Pa.Google Scholar
Somero, G. N. and De Vries, A. L. 1967. Temperature tolerance of some Antarctic fishes. Science. 156:257258.CrossRefGoogle ScholarPubMed
Spotila, J. R., Lommen, P. W., Bakken, G. S., and Gates, D. M. 1973. A mathematical model for body temperatures of large reptiles: implications for dinosaur ecology. Am. Nat. 107:391404.CrossRefGoogle Scholar
Templeton, J. R. 1970. Reptiles. Pp. 167221. In: Whittow, G. C., ed. Comparative Physiology of Thermoregulation (1). Academic Press; New York and London.Google Scholar
Thulborn, R. A. 1973. Thermoregulation in dinosaurs. Nature. 245:5152.CrossRefGoogle Scholar
Torre-Bueno, J. R. 1976. Temperature regulation and heat dissipation during flight in birds. J. Exp. Biol. 65:471482.CrossRefGoogle ScholarPubMed
Whittow, G. C. 1973. Evolution of thermoregulation. Pp. 201258. In: Whittow, G. C., ed. Comparative Physiology of Thermoregulation (3). Academic Press; New York and London.CrossRefGoogle Scholar