Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T21:22:11.296Z Has data issue: false hasContentIssue false

Rise and fall in diversity of Neogene marine vertebrates on the temperate Pacific coast of South America

Published online by Cambridge University Press:  08 April 2016

Jaime A. Villafaña*
Affiliation:
Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Avenida Bernardo Ossandón 877, C.P. 1781681, Coquimbo, Chile. E-mail: [email protected]
Marcelo M. Rivadeneira
Affiliation:
Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Avenida Bernardo Ossandón 877, C.P. 1781681, Coquimbo, Chile. E-mail: [email protected]
*
Corresponding author

Abstract

Even though Neogene outcrops along the temperate Pacific coast of South America harbor a rich marine vertebrate fossil record, no studies have examined the diversification patterns of these taxa. Here, we analyze diversification trends based on the stratigraphic ranges of 86 genera of marine vertebrates, including sharks, rays, chimaeras, marine mammals, and seabirds. The richness of genera shows a hump-shaped trend, with maximum values around the late Miocene, driven by a large pulse of origination during mid-Miocene and higher extinction rates during the Pliocene. Trends varied markedly among taxa and departed largely from expectations based on global diversification patterns. Moreover, these trends cannot be explained solely as a sampling artifact derived from sampling intensity (i.e., number of occurrences) or sedimentary rock availably (i.e., number of geologic maps). A large fraction of genera (42%) went globally extinct by the late Pliocene–Pleistocene, and the extinction was highly selective according to different ecological and life-history traits. An analysis using “randomForest” showed that taxonomic structure and the geographic midpoint of distribution could explain up to 83% of extinction of genera. The extinction was taxonomically clumped (i.e., disproportionally high in Cetacea and very low in Carcharhiniformes) and concentrated in the northern area of the temperate Pacific coast of South America. Our results suggest that the particular paleogeographic, paleoclimatic, and paleoceanographic events that took place during the Neogene along the temperate Pacific coast of South America had a significant effect on the structure of marine biodiversity.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2010. The shifting balance of diversity among major marine animal groups. Science 329:11911194.Google Scholar
Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., and Zeitler, P. K. 2005. Climatic and ecologic changes during Miocene surface uplift in the southern Patagonian Andes. Earth and Planetary Science Letters 230:125142.Google Scholar
Boyer, A. G. 2010. Consistent ecological selectivity through time in Pacific island avian extinctions. Conservation Biology 24:511519.Google Scholar
Breiman, L. 2001. Random forests. Machine Learning 45:532.CrossRefGoogle Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. 2004. Toward a metabolic theory of ecology. Ecology 85:17711789.Google Scholar
Calle, M. L., Urrea, V., Boulesteix, A.-L., and Malats, N. 2011. AUC-RF: a new strategy for genomic profiling with random forest. Human Heredity 72:121132.Google Scholar
Canto, J., Yanez, J., and Rovira, J. 2010. Estado actual del conocimiento de los mamíferos fósiles de Chile. Estudios Geológicos 66:255284. [In Spanish.]Google Scholar
Carrillo-Briceño, J. D., González-Barba, G., Landaeta, M. F., and Nielsen, S. N. 2013. Condrictios foìsiles del Plioceno superior de la formacioìn Horcoìn, regioìn de Valparaiìso, Chile central. Revista Chilena de Historia Natural 86:191206. [In Spanish.]Google Scholar
Chavez, M., Stucchi, M., and Urbina, M. 2007. El registro de Pelagornithidae (Aves: Pelecaniformes) y la avifauna neógena del Pacífico sudeste. Bulletin de l'Institut Français d'Études Andines 36:175197. [In Spanish.]Google Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, L., Marshall, B. A., and Jones, C. M. 2006. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.Google Scholar
Davidson, A. D., Boyer, A. G., Kim, H., Pompa-Mansilla, S., Hamilton, M. J., Costa, D. P., Ceballos, G., and Brown, J. H. 2012. Drivers and hotspots of extinction risk in marine mammals. Proceedings of the National Academy of Sciences USA 109:33953400.Google Scholar
De Muizon, C. 1993. Walrus-like feeding adaptation in a new cetacean from the Pliocene of Peru. Nature 365:745748.Google Scholar
De Muizon, C., and Devries, T. J. 1985. Geology and paleontology of late Cenozoic marine deposits in the Sacaco area (Peru). Geologische Rundschau 74:547563.Google Scholar
Dekens, P. S., Ravelo, A. C., and McCarthy, M. D. 2007. Warm upwelling regions in the Pliocene warm period. Paleoceanography 22 (3):PA3211. doi: 10.1029/2006PA001394.Google Scholar
del Monte-Luna, P., and Lluch-Belda, D. 2003. Vulnerability and body size: tetrapods versus fish 45:257262.Google Scholar
Domning, D. P., and Pervesler, P. 2001. The osteology and relationships of Metaxytherium krahuletzi Deperet, 1895 (Mammalia, Sirenia). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 553:189.Google Scholar
Dowsett, H. J., and Robinson, M. M. 2009. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective. Philosophical Transactions of the Royal Society of London A 367:109125.Google Scholar
Dulvy, N. K., and Reynolds, J. D. 2002. Predicting extinction vulnerability in skates. Conservation Biology 16:440450.Google Scholar
Duncan, R. P., and Blackburn, T. M. 2004. Extinction and endemism in the New Zealand avifauna. Global Ecology and Biogeography 13:509517.Google Scholar
Ehret, D. J., Hubbell, H., and MacFadden, B. J. 2009. Exceptional preservation of the white shark Carcharodon (Lamniformes, Lamnidae) from the early Pliocene of Peru. Journal of Vertebrate Paleontology, 29:113.Google Scholar
Ehret, D. J., MacFadden, B. J., Jones, D. S., Devries, T. J., Foster, D. A., and Salas-Gismondi, R. 2012. Origin of the white shark Carcharodon (Lamniformes: Lamnidae) based on recalibration of the upper Neogene Pisco Formation of Peru. Paleontology 55:11391153.Google Scholar
Ezard, T. H., Aze, T., Pearson, P. N., and Purvis, A. 2011. Interplay between changing climate and species' ecology drives macroevolutionary dynamics. Science 332:349351.Google Scholar
Field, I. C., Meekan, M. G., Buckworth, R. C., and Bradshaw, C. J. A. 2009. Susceptibility of sharks, rays and chimaeras to global extinction. Advances in Marine Biology 56:275363.Google Scholar
Finnegan, S., Payne, J. L., and Wang, S. C. 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318341.Google Scholar
García, V. B., Lucifora, L. O., and Myers, R. A. 2008. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proceedings of the Royal Society of London B 275:8389.Google Scholar
Garreaud, R. D., Molina, A., and Farias, M. 2010. Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth and Planetary Science Letters 292:3950.Google Scholar
Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., and Mulch, A. 2008. Rise of the Andes. Science 320:13041307.Google Scholar
Gaston, K. J., and Blackburn, T. M. 2000. Pattern and process in macroecology. Blackwell Science, Oxford.Google Scholar
Glasser, N. F., Jansson, K. N., Harrison, S., and Kleman, J. 2008. The glacial geomorphology and Pleistocene history of South America between 38° S and 56° S. Quaternary Science Reviews 27:365390.Google Scholar
Guinot, G., Adnet, S., and Cappetta, H. 2012. An analytical approach for estimating fossil record and diversification events in sharks, skates and rays. PLoS One 7:e44632.Google Scholar
Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., and McGuire, J. L. 2012. Extinctions in ancient and modern seas. Trends in Ecology and Evolution 27:608617.Google Scholar
Hartley, A. J., and Chong, G. 2002. Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:4346.Google Scholar
Herm, D. 1969. Marines Pliozän und Pleistozän in Nord und Mittel-Chile unter besonderer Berücksichtigung der Entwicklung der Mollusken-Faunen. Zitteliana 2:1159. [In German.]Google Scholar
Ibaraki, M. 1997. Closing of the central American seaway and Neogene coastal upwelling along the Pacific coast of South America. Tectonophysics 281:99104.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.Google Scholar
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811535.Google Scholar
Kiel, S., and Nielsen, S. N. 2010. Quaternary origin of the inverse latitudinal diversity gradient among southern Chilean mollusks. Geology 38:955958.Google Scholar
Koretsky, I. 2001. Morphology and systematics of Miocene Phocinae (Mammalia: Carnivora) from Paratethys and the North Atlantic region. Geologica Hungarica Series Palaeontologica 54:1109.Google Scholar
Le Roux, J. P., Gomez, C., Venegas, C., Fenner, J., Middleton, H., Marchant, M., Buchbinder, B., Frassinetti, D., Marquardt, C., Gregory-Wodzicki, K. M., and Lavenu, A. 2005. Neogene-Quaternary coastal and offshore sedimentation in north central Chile: record of sea-level changes and implications for Andean tectonism. Journal of South American Earth Sciences 19:8398.Google Scholar
Liaw, A., and Wiener, M. 2002. Classification and regression by randomForest. R News 2:1822.Google Scholar
Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., and Stenseth, N. C. 2008. Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences USA 105:60976102.Google Scholar
Lloyd, G. T. 2012. A refined modelling approach to assess the influence of sampling on palaeobiodiversity curves: new support for declining Cretaceous dinosaur richness. Biology Letters 8:123126.Google Scholar
Lloyd, G. T., Pearson, P. N., Young, J. R., and Smith, A. B. 2012. Sampling bias and the fossil record of planktonic foraminifera on land and in the deep sea. Paleobiology 38:569584.Google Scholar
Long, D. J. 1993. Late Miocene and early Pliocene fish assemblages from the north of Chile. Tertiary Research 14:117126.Google Scholar
Marx, F. G. 2009. Marine mammals through time: when less is more in studying palaeodiversity. Proceedings of the Royal Society of London B 276:887892.Google Scholar
Marx, F. G., and Uhen, M. D. 2010. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327:993996.Google Scholar
Mayr, G., and Rubilar-Rogers, D. 2010. Osteology of a new giant bony-toothed bird from the Miocene of Chile, with a revision of the taxonomy of Neogene Pelagornithidae. Journal of Vertebrate Paleontology 30:13131330.Google Scholar
McGowan, A. J., and Smith, A. B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80103.Google Scholar
McKinney, L. M. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology, Evolution, and Systematics 28:495516.Google Scholar
Morlon, H., Parsons, T. L., and Plotkin, B. J. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences USA 108:1632716332.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.Google Scholar
Philippi, R. A. 1887. Los fósiles Terciarios i Cuartarios de Chile. Imprenta Brockhaus, Leipzig. [In Spanish.]Google Scholar
Pilleri, G. 1986. The Denticeti of the western Paratethys (upper marine Molasse of Switzerland). Investigations on Cetacea 18:1178.Google Scholar
R Development Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org.Google Scholar
Rivadeneira, M. M., and Marquet, P. A. 2007. Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology 33:455468.Google Scholar
SERNAGEOMIN. 2003. Mapa Geológico de Chile: versión digital. CD-ROM, Versión 1.0, 2003. Servicio Nacional de Geología y Minería, Santiago. [In Spanish.]Google Scholar
Smith, A. B., and McGowan, A. J. 2005. Cyclicity in the fossil record mirrors rock outcrop area. Biology Letters 1:443445.Google Scholar
Smith, A. B., and McGowan, A. J. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 50:765774.Google Scholar
Smith, A. B., Lloyd, G. T., and McGowan, A. J. 2012. Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends. Proceedings of the Royal Society of London B 279:44894495.Google Scholar
Suto, I., Kawamura, K., Hagimoto, S., Teraishi, A., and Tanaka, Y. 2012. Changes in upwelling mechanisms drove the evolution of marine organisms. Palaeogeography, Palaeoclimatology, Palaeoecology 339–341:3951.Google Scholar
Tsuchi, R. 2002. Neogene evolution of surface marine climate in Pacific and notes on related events. Revista Mexicana de Ciencias Geológicas 19:260270.Google Scholar
Uhen, M. D. 2007. USNM Chesapeake group cetacean collection data (unpublished). Paleobiology Database. paleodb.org.Google Scholar
Uhen, M. D., and Pyenson, N. D. 2007. Diversity estimates, biases, and historiographic effects: resolving cetacean diversity in the Tertiary. Palaeontologia Electronica, art. 10.2.11A.Google Scholar
Valenzuela-Toro, A. M., Gutstein, C. S., Varas-Malca, R. M., Suarez, M. E., and Pyenson, N. D. 2013. Pinniped turnover in the South Pacific Ocean: new evidence from the Plio-Pleistocene of the Atacama Desert, Chile. Journal of Vertebrate Paleontology 33:216223.Google Scholar
Walsh, S. A., and Hume, J. P. 2001. A new Neogene marine avian assemblage from north-central Chile. Journal of Vertebrate Paleontology 21:484491.Google Scholar
Warheit, K. 2002. The seabird fossil record and the role of paleontology in understanding seabird community structure. Pp. 1755inSchreiber, E. and Burger, J., eds. Biology of marine birds. CRC Press, Boca Raton, Fla.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686693.Google Scholar
Zinmeister, W. J. 1978. Effect of formation of the west Antarctic ice sheet on shallow-water marine faunas of Chile. Antarctic Journal of the United States 13:2526.Google Scholar