Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T13:14:38.511Z Has data issue: false hasContentIssue false

Response of tropical vegetation to Paleogene warming

Published online by Cambridge University Press:  08 April 2016

Carlos A. Jaramillo*
Affiliation:
Department of Paleobiology, MRC 121, Smithsonian Institution, Washington D.C. 20560. E-mail: [email protected]

Abstract

The late Paleocene-early Eocene transition was characterized by a long period of global warming that culminated with the highest temperatures of the Cenozoic. This interval is associated with a significant increase in plant diversity in temperate latitudes. However, data from tropical regions remain largely unknown. The record of pollen and spore diversity across the late Paleocene to the early middle Eocene of eight sections in central and eastern Colombia was analyzed. Several techniques, including range-through method, rarefaction, bootstrap, detrended correspondence analysis, and Shannon index, were used to assess the significance of the observed diversity pattern. The palynofloral record indicates that the lower to middle Eocene contains a significantly higher palynofloral diversity than the underlying upper Paleocene strata. This pattern is maintained after accounting for sample size, number of samples/time unit, lithofacies, and depositional systems. Eocene palynofloras have higher alpha and beta diversities and a higher equitability than Paleocene palynofloras. This increase in diversity is the product of a gradual increase in the rate of first appearances and a gradual decrease in the rate of last appearances. The early to middle Eocene increase in diversity, as well as the increase in spore abundance and diversity, suggests that tropical (equatorial) climate became wetter during the early to middle Eocene. This interpretation favors causes for early Eocene warming that do not involve significant increases in greenhouse gases. Samples from strata associated with the Paleocene/Eocene thermal maximum were barren for palynomorphs, and the effects of this climatic event on tropical vegetation remains uncertain.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askin, R. A., and Spicer, R. A. 1995. The Late Cretaceous and Cenozoic history of vegetation and climate at northern and southern high latitudes: a comparison. Pp. 156173in National Research Council, eds. Effects of past global change on life. National Academy Press, Washington, D.C.Google Scholar
Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowensteink, T. K., Bacher, N. P., and Veliz, C. 2001a. Tropical climates at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698701.Google Scholar
Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R. B., Grove, M. J., Tapia, P. M., Gross, S. L., Rowe, H. D., and Broda, J. P. 2001b. The history of South American tropical precipitation for the past 25,000 years. Science 291:640643.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. II, and Aubry, M. 1995. A revised Cenozoic geochronology and chronostratigraphy. Pp. 129212in Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J., eds. Geochronology time scales and global stratigraphic correlation. SEPM, Tulsa.Google Scholar
Bice, K. L., Sloan, L. C., and Barron, E. J. 2000. Comparison of early Eocene isotopic paleotemperatures and the three-dimensional OGCM temperature field: the potential for use of model-derived surface water δ18O. Pp. 79131in Huber, B. T., MacLeod, K. G., and Scott, L. W., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
Boltovskoy, D. 1988. The range-through method and first-last appearance data in paleontological surveys. Journal of Paleontology 62:157159.Google Scholar
Bown, T. M., and Kraus, M. J. 1981. Lower Eocene alluvial paleosols (Willwood Formation northwestern Wyoming, USA) and their significance for paleoecology, paleoclimatology, and basin analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 34:130.Google Scholar
Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, K., Kelly, D. C., Premoli Silva, I., Sliter, W. V., and Lohmann, K. C. 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography 10:841865.Google Scholar
Burnham, R. J., and Graham, A. 1999. The history of neotropical vegetation: new developments and status. Annals of the Missouri Botanical Garden 86:546589.Google Scholar
Bush, M. B. 1994. Amazonian speciation: a necessarily complex model. Journal of Biogeography 21:517.Google Scholar
Christophel, D. C. 1995. The Impact of climatic changes on the development of the Australian flora. Pp. 156173in National Research Council, eds. Effects of past global change on life. National Academy Press, Washington, D.C.Google Scholar
Clyde, W. C., and Gingerich, P. D. 1998. Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology 26:10111014.Google Scholar
Colinvaux, P. A., and de Oliveira, P. E. 2001. Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:5163.Google Scholar
Colinvaux, P. A., de Oliveira, P. E., Moreno, J. E., Miller, M. C., and Bush, M. B. 1996. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:8588.Google Scholar
Colinvaux, P., de Oliveira, P. E., and Moreno, J. E. 1999. Amazon pollen manual and atlas. Hardwood Academic, Amsteldijk.Google Scholar
Colinvaux, P. A., de Oliveira, P. E., and Bush, M. B. 2000. Amazonian and neotropical plant communities on glacial timescales: the failure of the aridity and refuge hypothesis. Quaternary Science Reviews 19:141169.Google Scholar
Colmenares, O. A., and Terán, L. 1993. A biostratigraphic study of Paleogene sequences in southwestern Venezuela. Palynology 17:6789.Google Scholar
Colwell, R. K. 2000. Estimates, Version 6. 0b1. http://viceroy.eeb.uconn.edu/Estimates6/.Google Scholar
Colwell, R. K., and Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London B 345:101118.Google Scholar
Cowling, S. A., Maslin, M. A., and Sykes, M. T. 2001. Paleovegetation simulations of lowland Amazonia and implications for Neotropical allopatry and speciation. Quaternary Research 55:140149.Google Scholar
Crowley, T. J., and Zachos, J. C. 2000. Comparison of zonal temperature profiles for past warm past periods. Pp. 5076in Huber, B. T., MacLeod, K. G., and Wing, S. L., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
Duggleby, R. G., and Ward, L. C. 1991. Analysis of physiological data characterized by two regimes separated by an abrupt transition. Physiological Zoology 64:885889.Google Scholar
Farley, M. 1989. Palynological facies fossils in nonmarine environments in the Paleogene of the Bighorn Basin. Palaios 4:565573.Google Scholar
Farley, M. 1990. Vegetation distribution across the early Eocene depositional landscape from palynological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 79:1127.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Pp. 74102in Erwin, D. H., and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4): 74–102.Google Scholar
Freitas, H. A. de, Ruiz, L. C., Aravena, R., Marques, S. E., Ribeiro, A. S., and Boulet, R. 2001. Late Quaternary vegetation dynamics in the southern Amazon basin inferred from carbon isotopes in soil organic matter. Quaternary Research 55:3946.Google Scholar
Gentry, A. H. 1982. Patterns of neotropical plant species diversity. Evolutionary Biology 15:184.Google Scholar
Gentry, A. H. 1986. Species richness and floristic composition of the Chocó region plant communities. Caldasia 15:7191.Google Scholar
Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.Google Scholar
Germeraad, J. H., Hopping, C. A., and Muller, J. 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology 6:189348.Google Scholar
Gilinsky, N. L. 1991. Bootstrapping and the fossil record. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:185206. Paleontological Society, Knoxville.Google Scholar
Gonzalez, A. E. 1967. A palynologic study on the upper Los Cuervos and Mirador formations (lower and middle Eocene), Tibú Area, Colombia. E. J. Brill, Leiden.Google Scholar
Graham, A. 1999. Late Cretaceous and Cenozoic history of North American vegetation. Oxford University Press, New York.Google Scholar
Haberle, S. G., and Maslin, M. A. 1999. Late Quaternary vegetation and climate change in the Amazon Basin based on a 50,000 year pollen record from the Amazon Fan, ODP Site 932. Quaternary Research 51:2738.Google Scholar
Hayek, L. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Hill, M. O., and Gauch, H. G. 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42:4758.Google Scholar
Hillborn, R., and Mangel, M. 1997. The ecological detective. Princeton University Press, Princeton, N.J.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.Google Scholar
Hooghiemstra, H., and Van der Hammen, T. 1998. Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth-Science Reviews 44:147183.Google Scholar
Huber, M., and Sloan, L. C. 1999. Warm climate transitions: a general circulation modeling study of the Late Paleocene Thermal maximum (~56 Ma). Journal of Geophysical Research 104:1663316655.Google Scholar
Jaramillo, C., and Dilcher, D. L. 2000. Microfloral diversity patterns of the late Paleocene–Eocene interval in Colombia, northern South America. Geology 28:815818.Google Scholar
Jaramillo, C., and Dilcher, D. L. 2001. Middle Paleogene palynology of central Colombia, South America: a study of pollen and spores from tropical latitudes. Palaeontographica, Abteilung B 258:87213.Google Scholar
Kelly, D. C., Bralower, T. J., and Zachos, J. C. 1998. Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 141:139161.Google Scholar
Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225229.Google Scholar
Kovach, W. L. 1998. MVSP-A multivariate statistical package for Windows, Version 3.0. Kovach Computing Services, Pentraeth, Wales.Google Scholar
Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J.Google Scholar
Maslin, M. A., and Burns, S. J. 2000. Reconstruction of the Amazon basin effective moisture availability over the past 14,000 years. Science 290:22852287.Google Scholar
Mayle, F. E., Burbridge, R., and Killeen, T. J. 2000. Millenial-scale dynamics of southern Amazonian rain forests. Science 290:22912294.Google Scholar
McAleece, N., Lambshead, P. J. D., Paterson, G. L., and Gage, J. G. 1997. Biodiversity Professional Beta Version. http://www.nhm.ac.uk/zoology/bdpro.Google Scholar
McKinney, M. L. 1998. Biodiversity dynamics: niche preemption and saturation in diversity equilibria. Pp. 116in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2:119.Google Scholar
Moran, R. C. 1998. The genera of neotropical ferns, a guide for students. Organization for Tropical Studies, San José, Costa Rica.Google Scholar
Morley, R. J. 2000. Origin and evolution of tropical rain forests. Wiley, New York.Google Scholar
Norris, R. D., and Röhl, U. 1999. Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition. Nature 401:775778.Google Scholar
Pak, D. K., and Miller, K. G. 1992. Paleocene to Eocene benthic foraminiferal isotopes and assemblages: implications for deep water circulation. Paleoceanography 7:405422.Google Scholar
Pielou, E. C. 1984. The interpretation of ecological data. Wiley, New York.Google Scholar
Prentice, M. L., and Matthews, R. K. 1988. Cenozoic ice-volume history: development of a composite oxygen isotope record. Geology 16:963966.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.Google Scholar
Regali, M., Uesugui, N., and Santos, A. 1974. Palinologia dos sedimentos Meso-Cenozoicos do Brasil. Boletim Tecnico da Petrobras 17:177191.Google Scholar
Ricklefs, R. E., and Schluter, D. 1993. Species diversity: regional and historical influences. Pp. 350363in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Rind, D., and Chandler, M. 1991. Increased ocean heat transports and warmer climate. Journal of Geophysical Research 96:74377461.Google Scholar
Romero, E. J. 1993. South American paleofloras. Pp. 6285in Goldblatt, P., ed. Biological relationships between Africa and South America. Yale University Press, New Haven, Conn.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Rull, V. 1999. Palaeofloristic and palaeovegetational changes across the Paleocene/Eocene boundary in northern South America. Review of Palaeobotany and Palynology 107:8395.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.Google Scholar
Sepkoski, J. J. Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.Google Scholar
Sloan, L. C., and Barron, E. J. 1992. A comparison of Eocene climate model results to quantified paleoclimatic interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 93:183202.Google Scholar
Sloan, L. C., and Morrill, C. 1998. Orbital forcing and Eocene continental temperatures. Palaeogeography, Palaeoclimatology, Palaeoecology 144:2135.Google Scholar
Sloan, L. C., and Rea, D. K. 1995. Atmospheric carbon dioxide and early Eocene climate: a general circulation modeling sensitive study. Palaeogeography, Palaeoclimatology, Palaeoecology 119:275292.Google Scholar
Sloan, L. C., Walker, J. C., and Moore, T. C. 1995. Possible role of oceanic heat transport in early Eocene climate. Paleoceanography 10:347356.Google Scholar
SPSS. 1999. Systat 9, statistics II. SPSS, Chicago.Google Scholar
Taylor, L. R. 1978. Bates, Williams—Hutchinson—a variety of diversities. Pp. 118in Mound, L. A. and Warloff, N., eds. Diversity of insect faunas (Symposium of the Royal Entomological Society of London No. 9). Blackwell Scientific, Oxford.Google Scholar
Thomas, D. J., Bralower, T. J., and Zachos, J. C. 1999. New evidence for subtropical warming during the late Paleocene thermal maximum: stable isotope from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography 14:561570.Google Scholar
Traverse, A. 1988. Paleopalynology. Academic Press, New York.Google Scholar
Van der Hammen, T., and Hooghiemstra, H. 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews 19:725742.Google Scholar
Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.CrossRefGoogle Scholar
Wilf, P. 2000. Late Paleocene–early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin 112:292307.Google Scholar
Wing, S. L. 1998. Late Paleocene-early Eocene floral and climatic change in the Bighorn Basin, Wyoming. Pp. 371391in Berggren, W., Aubry, M. P., and Lucas, S., eds. Late Paleocene–early Eocene biotic and climatic events. Columbia University Press, New York.Google Scholar
Wing, S. L., and Harrington, G. J. 2001. Floral response to rapid warming at the Paleocene/Eocene boundary and implications for concurrent faunal changes. Paleobiology 27:539563.Google Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115:117155.Google Scholar
Wolfe, J. A. 1978. A paleobotanical interpretation of tertiary climates in the Northern Hemisphere. American Scientist 66:694703.Google Scholar
Wolfe, J. A., and Poore, R. Z. 1982. Tertiary marine and nonmarine climatic trends. Pp. 154158in National Research Council, eds. Climate in earth history. National Academy Press, Washington, D.C.Google Scholar
Yeager, D. P., and Ultsch, G. R. 1989. Physiological regulation and conformation: a BASIC program for the determination of critical points. Physiological Zoology 62:888907.Google Scholar
Zachos, J. C., Lohmann, K. C., Walker, J. C., and Wide, S. W. 1993. Abrupt climate change and transient climates during the Paleogene: a marine perspective. Journal of Geology 101:191213.Google Scholar
Zachos, J. C., Stott, L. D., and Lohman, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9:353387.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar
Zar, J. H. 1999. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar