Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T12:44:08.437Z Has data issue: false hasContentIssue false

Resilience of plant-insect interactions in an oak lineage through Quaternary climate change

Published online by Cambridge University Press:  10 March 2015

Tao Su
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China. E-mail: [email protected] State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
Jonathan M. Adams
Affiliation:
College of Natural Sciences, Seoul National University, Gwanak-Gu, Seoul 151, Republic of Korea. E-mail: [email protected]
Torsten Wappler
Affiliation:
Steinmann Institute for Geology, Mineralogy and Palaeontology, Division Palaeontology, University of Bonn, Nussallee 8, D-53115 Bonn, Germany
Yong-Jiang Huang
Affiliation:
Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
Frédéric M. B. Jacques
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China. E-mail: [email protected]
Yu-Sheng (Christopher) Liu
Affiliation:
Department of Biological Sciences and Don Sundquist Center of Excellence in Paleontology, Box 70703, East Tennessee State University, Johnson City, Tennessee 37614-1710, U.S.A.
Zhe-Kun Zhou
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China. E-mail: [email protected] Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China

Abstract

Plant-insect interactions are vital for structuring terrestrial ecosystems. It is still unclear how climate change in geological time might have shaped plant-insect interactions leading to modern ecosystems. We investigated the effect of Quaternary climate change on plant-insect interactions by observing insect herbivory on leaves of an evergreen sclerophyllous oak lineage (Quercus section Heterobalanus, HET) from a late Pliocene flora and eight living forests in southwestern China. Among the modern HET populations investigated, the damage diversity tends to be higher in warmer and wetter climates. Even though the climate of the fossil flora was warmer and wetter than modern sample sites, the damage diversity is lower in the fossil flora than in modern HET populations. Eleven out of 18 damage types in modern HET populations are observed in the fossil flora. All damage types in the fossil flora, except for one distinctive gall type, are found in modern HET populations. These results indicate that Quaternary climate change did not cause extensive extinction of insect herbivores in HET forests. The accumulation of a more diverse herbivore fauna over time supports the view of plant species as evolutionary “islands” for colonization and turnover of insect species.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, J. M., and Woodward, F. I.. 1989. Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature 339:699701.Google Scholar
Adams, J. M., Ahn, S., Ainuddin, N., and Lee, M. L.. 2011. A further test of a palaeoecological thermometer: tropical rainforests have more herbivore damage diversity than temperate forests. Review of Palaeobotany and Palynology 164:6066.Google Scholar
An, Z. S., Clemens, S. C., Shen, J., Qiang, X. K., Jin, Z. D., Sun, Y. B., Prell, W. L., Luo, J. J., Wang, S. M., Xu, H., Cai, Y. J., Zhou, W. J., Liu, X. D., Liu, W. G., Shi, Z. G., Yan, L. B., Xiao, X. Y., Chang, H., Wu, F., Ai, L., and Lu, F. Y.. 2011. Glacial-interglacial Indian summer monsoon dynamics. Science 333:719723.Google Scholar
Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., and Whittaker, J. B.. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8:116.Google Scholar
Berg, M. P., Kiers, E. T., Driessen, G., Van Der Heijden, M., Kooi, B. W., Kuenen, F., Liefting, M., Verhoef, H. A., and Ellers, J.. 2010. Adapt or disperse: understanding species persistence in a changing world. Global Change Biology 16:587598.Google Scholar
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., and Finnegan, S.. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499504.Google Scholar
Brooker, R. W. 2006. Plant–plant interactions and environmental change. New Phytologist 171:271284.Google Scholar
Bush, G. L. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237251.Google Scholar
Carvalho, M. R., Wilf, P., Barrios, H., Windsor, D. M., Currano, E. D., Labandeira, C. C., and Jaramillo, C. A.. 2014. Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PLoS ONE 9:DOI: 10.1371/journal.pone.0094950.Google Scholar
Comes, H. P., and Kadereit, J. W.. 1998. The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science 3:432438.Google Scholar
Coope, G. R. 1979. Late Cenozoic fossil Coleoptera: evolution, biogeography, and ecology. Annual Review of Ecology and Systematics 10:247267.Google Scholar
Currano, E. D. 2009. Patchiness and long-term change in early Eocene insect feeding damage. Paleobiology 35:484498.Google Scholar
Currano, E. D., Wilf, P., Wing, S. L., Labandeira, C. C., Lovelock, E. C., and Royer, D. L.. 2008. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences USA 105:19601964.CrossRefGoogle ScholarPubMed
Denk, T., and Grimm, G. W.. 2010. The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351366.Google Scholar
Ellis, B., and Johnson, K. R.. 2013. Comparison of leaf samples from mapped tropical and temperate forests: Implications for interpretations of the diversity of fossil assemblages. Palaios 28:163177.Google Scholar
Feeny, P. 1976. Plant apparency and chemical defense. Recent Advances in Phytochemistry 10:140.Google Scholar
Futuyma, D. J., and Agrawal, A. A.. 2009. Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences USA 106:1805418061.Google Scholar
Harrell, F. E. 2009. R Design Package. Version 2:3–0. http://cran.r-project.org/src/contrib/Archive/Design.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:19651978.Google Scholar
Hódar, J. A., and Zamora, R.. 2004. Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodiversity and Conservation 13:493500.Google Scholar
Huang, X. L., Lei, F. M., and Qiao, G. X.. 2008. Areas of endemism and patterns of diversity for aphids of the Qinghai-Tibetan Plateau and the Himalayas. Journal of Biogeography 35:230240.Google Scholar
Knor, S., Prokop, J., Kvaček, Z., Janovský, Z., and Wappler, T.. 2012. Plant-arthropod associations from the early Miocene of the Most Basin in North Bohemia: palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 321–322:102112.Google Scholar
Labandeira, C. C., and Currano, E. D.. 2013. The fossil record of plant-insect dynamics. Annual Review of Earth and Planetary Sciences 41:287311.Google Scholar
Labandeira, C. C., Johnson, K. R., and Wilf, P.. 2002. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences USA 99:20612066.Google Scholar
Labandeira, C. C., Wilf, P., Johnson, K. R., and Marsh, F.. 2007. Guide to insect (and other) damage types on compressed plant fossils Version 3.0, Smithsonian Institution. Washington D.C. Available online at http://paleobiology.si.edu/pdfs/insectDamageGuide3.01.pdf.Google Scholar
Lang, G. 1994. Quartäre vegetationsgeschichte Europas. Gustav Fischer, Jena.Google Scholar
Li, H. M., and Guo, S. X.. 1976. The Miocene flora from Namling of Xizang. Acta Palaeontologica Sinica 15:718. [In Chinese with English abstract.].Google Scholar
Li, S. H., Deng, C. L., Yao, H. T., Huang, S., Liu, C. Y., He, H. Y., Pan, Y. X., and Zhu, R. X.. 2013. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. Journal of Geophysical Research 118:791807.Google Scholar
Li, X. S., Berger, A., Loutre, M. F., Maslin, M. A., Haug, G. H., and Tiedemann, R.. 1998. Simulating late Pliocene Northern Hemisphere climate with the LLN2-D Model. Geophysical Research Letters 25:915918.Google Scholar
Louys, J., Wilkinson, D. M., and Bishop, L. C.. 2012. Ecology needs a paleontological perspective. Pp. 2338in J. Louys, ed. Paleontology in ecology and conservation. Springer, Berlin.Google Scholar
McElwain, J. C. 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure. Geology 32:10171020.Google Scholar
Nixon, K. 1993. Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Annals of Forest Science 50:25s34s.Google Scholar
Nyman, T., Linder, H. P., Peña, C., Malm, T., and Wahlberg, N.. 2012. Climate-driven diversity dynamics in plants and plant-feeding insects. Ecology Letters 15:889898.Google Scholar
Oksanen, J. 2009. Multivariate analysis of ecological communities in R: vegan tutorial. http://cran.r-project.org.Google Scholar
Opler, P. A. 1974. Oaks as evolutionary islands for leaf-mining insects: the evolution and extinction of phytophagous insects is determined by an ecological balance between species diversity and area of host occupation. American Scientist 62:6773.Google Scholar
Pillans, B., and Gibbard, P.. 2012. The Quaternary period. Pp. 9791010in F. M., Gradstein, J. G. Ogg, and M. Schmitz, eds. The geologic time scale 2012. Elsevier, Amsterdam.Google Scholar
Prokop, J., Wappler, T., Knor, S., and Kvaček, Z.. 2010. Plant-arthropod associations from the lower Miocene of the Most Basin in northern Bohemia (Czech Republic): a preliminary report. Acta Geologica Sinica (English edition) 84:903914.Google Scholar
R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Scholze, M., Knorr, W., Arnell, N. W., and Prentice, I. C.. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences USA 103:1311613120.Google Scholar
Schoonhoven, L. M., van Loon, J. J. A., and Dicke, M.. 2005. Insect-plant biology, 2nd ed. Oxford University Press, Oxford.Google Scholar
Southwood, T. R. E. 1973. The insect/plant relationship—an evolutionary perspective. Symposia of the Royal Entomological Society of London 6:330.Google Scholar
Stone, G. N., van der Ham, R. W. J. M., and Brewer, J. G.. 2008. Fossil oak galls preserve ancient multitrophic interactions. Proceedings of the Royal Society of London B 275:22132219.Google Scholar
Su, T. 2010. On the establishment of the leaf physiognomy—climate model and a study of the late Pliocene Yangjie flora, Southwest China. Ph.D. dissertation. Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, China. [In Chinese with English abstract.].Google Scholar
Su, T., Jacques, F. M. B., Liu, Y. S., Xiang, J. Y., Xing, Y. W., Huang, Y. J., and Zhou, Z. K.. 2011. A new Drynaria (Polypodiaceae) from the Upper Pliocene of Southwest China. Review of Palaeobotany and Palynology 164:132142.Google Scholar
Su, T., Jacques, F. M. B., Spicer, R. A., Liu, Y. S., Huang, Y. J., Xing, Y. W., and Zhou, Z. K.. 2013. Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Climate of the Past 9:19111920.Google Scholar
Tao, J. R., Zhou, Z. K., and Liu, Y. S.. 2000. The evolution of the Late Cretaceous-Cenozoic flora in China. Science Press, Beijing. [In Chinese with English abstract.].Google Scholar
Wang, B. 2006. The Asian monsoon. Springer-Praxis Books, Berlin.Google Scholar
Wappler, T. 2010. Insect herbivory close to the Oligocene-Miocene transition: a quantitative analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 292:540550.Google Scholar
Whitfeld, T. J. S., Novotny, V., Miller, S. E., Hrcek, J., Klimes, P., and Weiblen, G. D.. 2012. Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology 93:S211S222.Google Scholar
Wilf, P. 2008. Insect-damaged fossil leaves record food web response to ancient climate change and extinction. New Phytologist 178:486502.Google Scholar
Wilf, P., and Labandeira, C. C.. 1999. Response of plant-insect associations to Paleocene-Eocene warming. Science 284:21532156.Google Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R., Coley, P. D., and Cutter, A. D.. 2001. Insect herbivory, plant defense, and early Cenozoic climate change. Proceedings of the National Academy of Sciences USA 98:62216226.Google Scholar
Working Group on Yunnan Vegetation. 1987. Vegetation in Yunnan. Science Press, Beijing. [In Chinese.]Google Scholar
Yang, Q. S., Chen, W. Y., Xia, K., and Zhou, Z. K.. 2009. Climatic envelope and present distribution of the evergreen sclerophyllous oaks in eastern Himalayas and the Hengduan Mountains. Journal of Systematics and Evolution 47:183190.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar