Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T07:21:19.922Z Has data issue: false hasContentIssue false

The relationship of the scleractinian corals to the rugose corals

Published online by Cambridge University Press:  20 May 2016

William A. Oliver Jr.*
Affiliation:
U.S. Geological Survey, E-305 Natural History Museum, Washington, D.C. 20560

Abstract

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:

(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.

(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.

(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beauvais, L. 1976. Madréporaires du Jurassique. Mem. de la Soc. Geol. France, n.s., 55, mem. 126:184.Google Scholar
Bendukidze, N. S. and Chikovani, A. A. 1962. [Subclass Hexacoralla]. Pp. 357417. In: Sokolov, B. S., ed. Fundamentals of Paleontology, v. II, Porifera, Archaeocyatha, Coelenterata, Vermes. Acad. Sci. USSR, Moscow (in Russian).Google Scholar
Bøggild, O. B. 1930. The shell structure of the molluscs. Mem. de l'Acad. R. des Sciences et des Lettres de Danemark, Sect. Sci., ser. 9, II(2):231336.Google Scholar
Carruthers, R. G. 1906. The primary septal plan of the Rugosa. Annals Mag. Nat. Hist., ser. 7. 18:356363.Google Scholar
Conway-Morris, S. 1978. Laggania cambria Walcott: a composite fossil. J. Paleontol. 52:126131.Google Scholar
Conway-Morris, S. and Whittington, H. B. 1979. The animals of the Burgess Shale. Sci. Am. July:122133.Google Scholar
Cuif, J.-P. 1974. Indices d'affinités paléozoïques chez des Madréporaires du Trias Supérieur. C. R. Acad. Sci. Paris. 279(D):17531756.Google Scholar
Cuif, J.-P. 1977a. Caractères et affinités Gallitellia, nouveau genre de Madréporaires du Carnian des Dolomites. Mem. BRGM. 89:256263.Google Scholar
Cuif, J.-P. 1977b. Arguments pour une relation phylétique entre les Madréporaires paléozoïques et ceux du Trias: implications systématique de l'analyse microstructural des Madréporaires triasiques. Soc. Geol. France, n. s. 56, Mém. 129:154.Google Scholar
Cuif, J.-P. In press. Microstructure versus morphologie dans le squelette des scléractiniaires du Trias inférieur. Acta Palaeont. Polonica, 25. (Paper presented at 3rd Int. Symp. on Fossil Cnidarians, Warsaw, Sept. 1979; preprint (draft) included in symposium program).Google Scholar
Duerden, J. E. 1902. Relationships of the Rugosa (Tetracoralla) to the living Zoantheae. Johns Hopkins Univ. Circ. 21:1925.Google Scholar
Eliaš ova, H. 1978. La redéfinition de l'ordre Hexanthiniaria Montanaro Gallitelli, 1975 (Zoantharia). Věstník Ústředního ústavu geologického. 53:89101.Google Scholar
Flügel, H. W. 1970. Die Entwicklung der rugosen Korallen im hohen Perm. Verh. Geol. B.-A. (Wien) 1970, 1:146161.Google Scholar
Flügel, H. W. 1973. Rugose Korallen aus dem oberen Perm Ost-Grönlands. Verh. Geol. B.-A. 1:157.Google Scholar
Flügel, H. W. 1975. Skelettentwicklung, Ontogenie, und Functionsmorphologie rugoser korallen. Paläontol. Z. 49(4):407431.Google Scholar
Friedman, G. M. 1964. Early diagenesis and lithification in carbonate sediments. J. Sed. Petrol. 34:777813.Google Scholar
Gerth, H. 1921. Die Anthozoen der Dyas von Timor. Pp. 67147. In: Wanner, J., ed. Paläontologie von Timor, lief. 9, ahb. 16, Stuttgart.Google Scholar
Glaessner, M. F. 1971. Geographic distribution and time range of the Ediacara Precambrian fauna. Geol. Soc. Am. Bull. 82:509514.Google Scholar
Glaessner, M. F. and Wade, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology. 9:599628.Google Scholar
Hand, C. 1966. On the evolution of the Actiniaria. Pp. 135146, In: Rees, W. J., ed. The Cnidaria and their Evolution. 449 pp. New York, N.Y. Google Scholar
Hill, Dorothy. 1935. British terminology for rugose corals. Geol. Mag. 72:481519.Google Scholar
Il'ina, T. G. 1962. [Some members of the family Plerophyllidae from the Permian-Triassic boundary beds of Dzhulfa]. Pal. Zh. 4:7082 (in Russian).Google Scholar
Il'ina, T. G. 1965. [Tetracorals from the Upper Permian and Lower Triassic of Zakavkaz'ya.]. Acad. nauk. SSSR, Trudy Pal. Inst. 107:1105 (in Russian).Google Scholar
Il'ina, T. G. 1967. [Evolution of the Rugosa in the passage beds between the Paleozoic and Mesozoic in the Mediterranean Region (Transcaucasus)]. Karpate-Balkanskaya geol. assoc., 7th. Sofia (1965) Mat. Koklady sovietskh. geologov.:330335 (in Russian).Google Scholar
Il'ina, T. G. 1974. [Morphology and basic stages of development of the suborder Polycoelina]. Pp. 211219. In: Sokolov, B. S., ed. Ancient Cnidaria, v. 1 (Novosibirsk) (in Russian).Google Scholar
Il'ina, T. G. 1977. Development of the septa of rugose corals of the superfamily Polycoeliacea. Mem. Bur. Rech. Geol. Min. (Paris). 89:7886.Google Scholar
Jull, R. K. 1965. Corallum increase in Lithostrotion . Palaeontology. 8:204225.Google Scholar
Koker, E. M. J. 1924. Anthozoa uit het Perm van het eiland Timor. I. Zaphrentidae, Plerophyllidae, Cystiphyllidae, Amphiastraeidae. Jb. Mijnw. Nederl. Oost-Indié. 51:150.Google Scholar
Krasnov, Ye. V. 1970. [The classification of early and middle Mesozoic corals (Scleractinians)]. Dokl. Acad. Sci., USSR, 193(1):192195.Google Scholar
Kummel, B. 1973. Aspects of the Lower Triassic (Scythian) Stage. Can. Soc. Petrol. Geol. Mem. 2:557571.Google Scholar
Kummel, B. and Teichert, C. 1973. The Permian-Triassic boundary beds in central Tethys. Can. Soc. Petrol. Geol. Mem. 2:1734.Google Scholar
Lindström, M. 1978. An octocoral from the Lower Ordovician of Sweden. Geol. et. Palaeontol. (Marburg) 12:4152.Google Scholar
Lowenstam, H. A. 1964. Biologic problems relating to the composition and diagenesis of sediments. Pp. 137195. In: Donnelly, T. W., ed. The Earth Sciences. Rice Univ. Semicentennial Pub.Google Scholar
Melnikova, G. K. and Roniewicz, E. 1976. Contribution to the systematics and phylogeny of Amphiastraeina (Scleractinia). Acta Palaeontol. Polonica. 21:97114.Google Scholar
Minato, M. and Kato, M. 1965. Waagenophyllidae. J. Fac. Sci. Hokkaido Univ. IV, Geol. Mineral. 12(3–4):1241.Google Scholar
Montanaro-Gallitelli, E. 1974a. Biochemistry of Triassic coelenterates. Pp. 6162. In: Sokolov, B. S., ed. Ancient Cnidaria v. 1 (Novosibirsk).Google Scholar
Montanaro-Gallitelli, E. 1974b. Morphogenesis and skeletal structure of some primitive Triassic corals. Pp. 220233. In: Sokolov, B. S., ed. Ancient Cnidaria, v. 1 (Novosibirsk).Google Scholar
Montanaro-Gallitelli, E. 1974c. Microstructure and septal arrangement in a primitive Triassic coral. Boll Soc. Paleontol. Italiana (1973) 12(1):822.Google Scholar
Montanaro-Gallitelli, E. 1975. Hexanthiniaria, a new order of Zoantharia (Anthozoa, Coelenterata). Boll. Soc. Paleontol. Italiana 14(1):3539.Google Scholar
Montanaro-Gallitelli, E., Morandi, N., and Pirani, R. 1974a. Corallofauna triassica aragonitica ad alto contenuto in stronzio: studio analitico e considerazioni. Boll. Soc. Paleontol. Italiana (1973) 12(2):130144.Google Scholar
Montanaro-Gallitelli, E., Morandi, N., and Pirani, R. 1974b. Some geochemical data on a triassic coral fauna. Proc. 2nd Internat. Coral Reef Symp. (Brisbane) 2:457459.Google Scholar
Oekentorp, K. 1974a. Electron microscope studies on skeletal structures in Coelenterata and their systematic value. Proc. 2nd Internat. Coral Reef Symp. (Brisbane) 2:321326.Google Scholar
Oekentorp, K. 1974b. Microstructure of Paleozoic corals. Pp. 1419. In: Sokolov, B. S., ed. Ancient Cnidaria, v. 1 (Novosibirsk).Google Scholar
Papoyan, A. S. 1974. [On the systematic position of the genus Cystophrentis from the Lower Carboniferous deposits of the southern Caucasus region (Armenia)]. Pp. 205211. In: Sokolov, B. S., ed. Ancient Cnidaria, v. 1 (Novosibirsk) (in Russian).Google Scholar
Rowett, C. L. and Minato, M. 1968. Corals from the Omi Limestone, central Honshu, Japan. J. Fac. Sci. Hokkaido Univ., IV, Geol. Mineral. 14(1):735.Google Scholar
Ryder, T. A. 1926. Pycnactis, Mesactis, Phaulactis, gen. now and Dinophyllum Lind. Ann. Mag. Nat. Hist. (9) 18:385401.Google Scholar
Sandberg, P. A. 1975a. Bryozoan diagenesis: bearing on the nature of the original skeleton of rugose corals. J. Paleontol. 40:587606.Google Scholar
Sandberg, P. A. 1975b. New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy. Sedimentology. 22:497537.Google Scholar
Sando, W. J. 1961. Morphology and ontogeny of Ankhelasma, a new Mississippian coral genus. J. Paleontol. 35:6581.Google Scholar
Sayutina, T. A. 1965. [Devonian colonial rugose corals from Transcaucasia.]. Pal. Zh. 4:410 (in Russian).Google Scholar
Schindewolf, O. H. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Eine Studie über den Bau der “Tetrakorallen” und ihre Beziehungen zu den Madreporarien. Abhandl. Reichs. f. Bodenforschung, n.s. 204:1324.Google Scholar
Scrutton, C. T. 1979. Early fossil cnidarians. Pp. 161207. In: House, M. R., ed. The Origin of Major Invertebrate Groups. Academic Press; London and N.Y. Google Scholar
Sorauf, J. E. 1977. Microstructure and magnesium content in Lophophyllidium from the Lower Pennsylvanian of Kentucky. J. Paleontol. 51:150169.Google Scholar
Sorauf, J. E. 1978. Original structure and composition of Permian rugose and Triassic scleractinian corals. Palaeontology. 21:321329.Google Scholar
Stehli, F. G. 1956. Shell mineralogy in Paleozoic corals. Science. 123:10311032.Google Scholar
Strusz, D. L. 1968. On Cyathophyllum mansfieldense Dun 1898: Lower Devonian, Loyola, Victoria. Proc. R. Soc. Victoria. 81:1118.Google Scholar
Teichert, C. and Kummel, B. 1972. Permian-Triassic boundary in the Kap Stosch area, East Greenland. Bull. Can. Petrol. Geol. 20:659675.Google Scholar
Teichert, C. and Kummel, B. 1976. Permian-Triassic boundary in the Kap Stosch area, East Greenland. Medd. om Grönland. 197(5):149.Google Scholar
Vollbrecht, E. 1928. Die Entwicklung des Septalapparates bei Semaiophyllum. Ein Beitrag zur Entwicklung des Septalapparates der Rugosen. N. Jb. Min. Geol. Paläontol., Beil.-Bd. 59:130.Google Scholar
Wells, J. W. 1956. Scleractinia. Pp. 328477. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, part F, Coelenterata. Geol. Soc. Am. and Univ. Kansas Press.Google Scholar
Wells, J. W. and Hill, D. 1956. Anthozoa—General features. Pp. 161165 and 231–233. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, part F, Coelenterata. Geol. Soc. Am. and Univ. Kansas Press.Google Scholar
Weyer, D. 1972. Zur Morphologie der Rugosa (Pterocorallia). Geologie. 21(6):710737.Google Scholar
Wright, A. J. 1969. Notes on tetracoral morphology. J. Paleontol. 43:12321236.Google Scholar
Yu Jian-zhang, (C. C. Yu) 1963. [On the relationship of Cystophrentis with the Hexacorals and the establishment of the Order Mesocorallia Yu (ord. nov.) and Family Cystophrentidae Yu (fam. nov.)]. Acta Palaeontol. Sinica 11(3):307318. (In Chinese with Russian summary; transl. by R. K. Jull).Google Scholar
Jian-zhang, Yu, Yin-dang, Lin, and Yin-nian, Fan. 1979. New materials of Mesocorallia from the Lower Carboniferous of China. Paper for the 9th Internat. Congr. on Carboniferous Stratigr. and Geol. (Kirin, China). 8 pp.Google Scholar