Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T19:44:24.311Z Has data issue: false hasContentIssue false

Postembryonic development of Dalmanitina, and the evolution of facial suture fusion in Phacopina

Published online by Cambridge University Press:  04 December 2018

Harriet B. Drage
Affiliation:
Institute of Earth Sciences, University of Lausanne, Lausanne 1015, Switzerland. E-mail: [email protected]. Present address: Department of Zoology, University of Oxford, Oxford OX1 3PS, U.K.
Lukáš Laibl
Affiliation:
Institute of Earth Sciences, University of Lausanne, Lausanne 1015, Switzerland; and Institute of Geology and Paleontology, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic. E-mail: [email protected].
Petr Budil
Affiliation:
Czech Geological Survey, 118 21 Prague 1, Czech Republic. E-mail: [email protected]

Abstract

A large sample of postembryonic specimens of Dalmanitina proaeva elfrida and D. socialis from the Upper Ordovician (Sandbian to Katian) Prague Basin allows for the first reasonably complete ontogenetic sequence of Dalmanitoidea (Phacopina). The material provides an abundance of morphological information, including well-preserved marginal spines in protaspides and meraspides, and hypostome external surfaces throughout. The development of D. proaeva elfrida is unusual due to variability in timing of the first trunk articulation. This broadens our developmental understanding of Phacopina, a diverse group of phacopid trilobites, and also allows us to study the evolution of their specializations in exoskeletal molting behavior. Adult phacopines, unlike most other trilobites, had fused facial sutures. This means that rather than molting through the sutural gape mode, characterized by opening of the facial sutures and separation of the librigenae, they disarticulated the entire cephalon in Salter’s mode of molting. For other phacopine clades (Phacopoidea) the transition to Salter’s mode occurs during the meraspid period or at the onset of holaspis, and its developmental timing is intraspecifically fixed. However, owing to the large sample size, we can see that facial suture fusion likely occurred later in Dalmanitina, usually during the holaspid period, and was intraspecifically variable with holaspides of varying sizes showing unfused sutures. Further, D. proaeva elfrida specimens showed an initial librigenal–rostral plate fusion event, where the librigenae began as separate entities but appear fused with the rostral plate as one structure (the “lower cephalic unit”) from M1, and are discarded as such during molting. Dalmanitoidea is considered to represent the first phacopine divergence, occurring earliest in the fossil record. This material therefore provides insight into how linked morphologies and behaviors evolved, potentially suggesting the timing of facial suture fusion in Phacopina moved earlier during development and became more intraspecifically fixed over geological time.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrain, J. M. 2013. A synopsis of Ordovician trilobite distribution and diversity. In D.A.T. Harper and T. Servais, eds. 2013. Early Palaeozoic Biogeography and Palaeogeography. Geological Society of London Memoir 38:297336.Google Scholar
Barrande, J. 1846. Notice préliminaire sur le Systême Silurien et les Trilobites de Bohême. Hirschfeld, Leipzig.Google Scholar
Barrande, J. 1852. Système Silurien du centre de la Bohême, Vol. 1. Prague.Google Scholar
Bergström, J., Pärnaste, H., and Zhiyi, Z.. 2013. Trilobites and biofacies in the Early–Middle Ordovician of Baltica and a brief comparison with the Yangtze Plate. Estonian Journal of Earth Sciences 62:205230.Google Scholar
Budil, P. 1996. Representatives of genera Mucronaspis and Songxites (Trilobita) from the Bohemian Upper Ordovician. Journal of the Czech Geological Society 41:6378.Google Scholar
Budil, P., and Bruthansová, J.. 2005. Molting in Ordovician dalmanitoid and acastastoid trilobites of the Prague Basin. Preliminary observations. Geologica Acta 3:373383.Google Scholar
Budil, P., Hörbinger, F., and Mencl, R.. 2009. Lower Devonian dalmanitid trilobites of the Prague Basin (Czech Republic). Transactions of the Royal Society of Edinburgh (Earth Sciences) 99:61100.Google Scholar
Chatterton, B. D. E. 1971. Taxonomy and ontogeny of Siluro-Devonian trilobites from near Yass, New South Wales. Palaeontographica Abteilung A 137:1108.Google Scholar
Chatterton, B. D. E. 1980. Ontogenetic studies of Middle Ordovician trilobites from the Esbataottine Formation, Mackenzie Mountains, Canada. Palaeontographica Abtteilung A 171:174.Google Scholar
Chatterton, B. D. E., and Speyer, S. E.. 1997. Ontogeny. Pp. O173–O247 in H. B. Whittington et al. Trilobita 1, Introduction, Order Agnostina, Order Redlichiida. Part O of R. C. Moore, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo.Google Scholar
Chatterton, B. D. E., Siveter, D. J., Edgecombe, G. D., and Hunt, A. S.. 1990. Larvae and relationships of the Calymenina (Trilobita). Journal of Paleontology 64:255277.Google Scholar
Chlupáč, I. 1965. Xiphosuran merostomes from the Bohemian Ordovician. Sborník Geologických Věd, Paleontologie 5:738.Google Scholar
Chlupáč, I. 1977. The phacopid trilobites of the Silurian and Devonian of Czechoslovakia. Rozpravy Ústředního Ústavu Geologického 43:1172.Google Scholar
Chlupáč, I. 1993. Geology of the Barrandian. A field trip guide. Waldemar Kramer, Frankfurt am Main.Google Scholar
Chlupáč, I. 2002. Explanatory remarks to reprinted Joachim Barrande: système silurien du centre de la Bohème, Vol. 1. Crustacés: Trilobites. Petr Materna, Prague.Google Scholar
Chlupáč, I., Brunnerová, Z., Havlíček, V., Kovanda, J., Kříž, J., Šalanský, K., Štych, J., and Zelenka, P.. 1989. Základní Geologická Mapa v Měřítku 1:25 000 list 12–413 Králův Dvůr. Czech Geological Survey, Prague.Google Scholar
Crônier, C. 2007. Larval morphology and ontogeny of an Upper Devonian phacopid: Nephranops from Thuringia, Germany. Journal of Paleontology 81:684700.Google Scholar
Crônier, C. 2010. Varied development of trunk segmentation in three related Upper Devonian phacopine trilobites. Historical Biology 22:341347.Google Scholar
Crônier, C., and Feist, R.. 2000. Evolution et systématique du groupe Cryphops (Trilobita, Phacopinae) du Dévonien supérieur. Senckenbergiana Lethaea 79:501515.Google Scholar
Crônier, C., and Fortey, R. A.. 2006. Morphology and ontogeny of an early Devonian phacopid trilobite with reduced sight from southern Thailand. Journal of Paleontology 80:529536.Google Scholar
Crônier, C., Bartzsch, K., Weyer, W., and Feist, R.. 1999. Larval morphology and ontogeny of a Late Devonian phacopid with reduced sight from Thuringia, Germany. Journal of Paleontology 73:240255.Google Scholar
Crônier, C., Auffray, J.-C., and Courville, P.. 2005. A quantitative comparison of the ontogeny of two closely-related Upper Devonian phacopid trilobites. Lethaia 38:123135.Google Scholar
Dai, T., Zhang, X.-L., Peng, S.-C., and Yao, X.-Y.. 2017. Intraspecific variation of trunk segmentation in the oryctocephalid trilobite Duyunaspis duyunensis from the Cambrian (Stage 4, Series 2) of South China. Lethaia 50:527539.Google Scholar
Daley, A. C., and Drage, H. B.. 2016. The fossil record of ecdysis, and trends in the moulting behaviour of trilobites. Arthropod Structure and Development 45:7196.Google Scholar
Drage, H. B., Holmes, J. D., García-Bellido, D. C., and Daley, A. C.. 2018. An exceptional record of Cambrian trilobite moulting behaviour preserved in the Emu Bay Shale, South Australia. Lethaia (online early access). doi: 10.1111/let.12266.Google Scholar
Eldredge, N. 1972. Systematics and evolution of Phacops rana (Green, 1832) and Phacops Iowensis Delo, 1935 (Trilobita) from the Middle Devonian of North America. Bulletin of the American Museum of Natural History 147:45114.Google Scholar
Eldredge, N. 2001. The nature and origin of supraspecific taxa revisited—with special reference to Trilobita. In J. M. Adrain, G. D. Edgecombe and B. S. Lieberman, eds. Fossils, phylogeny, and form. an analytical approach. Topics in Geobiology 19:341376. Kluwer Academic, New York.Google Scholar
Fatka, O., and Mergl, M.. 2009. The “microcontinent” Perunica: status and story 15 years after conception. In M. G. Basset, ed. Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography. Geological Society of London Special Publication 325:65101.Google Scholar
Fatka, O., Kraft, J., Kraft, P., Mergl, M., Mikulas, R., and Štorch, P.. 1995. Ordovician of the Prague Basin: stratigraphy and development. In J. D. Cooper, M. L. Droser and S. C. Finney, eds. Ordovician Odyssey. Short Papers for the 7th ISOS 77:241–244. Pacific Section Society for Sedimentary Geology, Fullerton, Calif.Google Scholar
Fatka, O., Lerosey-Aubril, R., Budil, P., and Rak, Š.. 2013. Fossilized guts in trilobites from the Upper Ordovician Letná Formation (Prague Basin, Czech Republic). Bulletin of Geosciences 88:95104.Google Scholar
Fatka, O., Budil, P., and David, M.. 2015. Digestive structures in Ordovician trilobites Colpocoryphe and Flexicalymene from the Barrandian area of Czech Republic. Estonian Journal of Earth Sciences 64:255266.Google Scholar
Fortey, R. A. 1997. Classification. Pp. O289–O302 in H. B. Whittington et al. Trilobita 1, introduction, Order Agnostina, Order Redlichiida. Part O of R. C. Moore, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo.Google Scholar
Fusco, G., Garland, T., Hunt, G., and Hughes, N. C.. 2012. Developmental trait evolution in trilobites. Evolution 66:314329.Google Scholar
Gutiérrez-Marco, J. C., , A. A., García-Bellido, D. C., and Rábano, I.. 2017. The Bohemo-Iberian regional chronostratigraphical scale for the Ordovician System and palaeontological correlations within South Gondwana. Lethaia 50:258295.Google Scholar
Hammann, W. 1976. Trilobiten aus dem oberen Caradoc der östlichen Sierra Morena (Spanien). Senckenbergiana Lethaea 57:3585.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:19.Google Scholar
Havlíček, V. 1981. Development of a linear synsedimentary depression exemplified by the Prague Basin (Ordovician–Middle Devonian; Barrandian area–Central Bohemia). Sborník Geologických Věd, Geologie 35:748.Google Scholar
Havlíček, V. 1982. Ordovician of Bohemia: development of the Prague Basin and its benthic communities. Sbornık Geologických Vĕd, Geologie 37:103136.Google Scholar
Havlíček, V. 1998. Ordovician. Pp. 4179 in I. Chlupáč, V. Havlíček, J. Kříž, Z. Kukal and P. Štorch, eds. Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague.Google Scholar
Havlíček, V., and Fatka, O.. 1992. Ordovician of the Prague Basin (Barrandian area, Czechoslovakia). Pp. 461471 in B. D. Webby and J. R. Laurie, eds. Global perspectives on Ordovician geology. Balkema, Rotterdam.Google Scholar
Havlíček, V., and Marek, L.. 1973. Bohemian Ordovician and its international correlation. Casopis pro Mineralogii a Geologii 18:225232.Google Scholar
Havlíček, V., and Vaněk, J.. 1966. The biostratigraphy of the Ordovician of Bohemia. Sborník Geologických Věd, Paleontologie 8:769.Google Scholar
Havlíček, V., Brunnerová, Z., Holub, V., Hrkal, Z., Cháb, J., Chlupáč, I., Kovanda, J., Rudolský, J., Šalanský, K., Štorch, P., and Volšan, V.. 1993. Základní Geologická Mapa v Měřítku 1:25 000 list 12–411 Beroun. Czech Geological Survey, Prague.Google Scholar
Havlíček, V., Vanĕk, J., and Fatka, O.. 1994. Perunica microcontinent in the Ordovician (its position within the Mediterranean Province, series division, benthic and pelagic associations). Sborník Geologických Vĕd, Geologie 46:2356.Google Scholar
Henningsmoen, G. 1975. Moulting in trilobites. Fossils and Strata 4:179200.Google Scholar
Henry, J. L. 1968. Crozonaspis struvei n. g. n. sp., Zeliszkellinae (Trilobita) de l’Ordovicien moyen de Bretagne. Senckenbergiana Lethaea 49:367381.Google Scholar
Holloway, D. J. 1981. Silurian dalmanitacean trilobites from North America and the origins of the Dalmanitinae and Synphoriinae. Palaeontology 24:695731.Google Scholar
Hou, J., Hughes, N. C., Lan, T., Yang, J., and Zhang, X.. 2015. Early postembryonic to mature ontogeny of the oryctocephalid trilobite Duodingia duodingensis from the lower Cambrian (Series 2) of southern China. Papers in Palaeontology 1:497513.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the late Cambrian trilobite Dikelocephalus . Smithsonian Contributions to Paleobiology 79:167.Google Scholar
Hughes, N. C., Minelli, A., and Fusco, G.. 2006. The ontogeny of trilobite segmentation: a comparative approach. Paleobiology 32:602627.Google Scholar
Hughes, N. C., Kříž, J., MacQuaker, J. H. S., and Huff, W. D.. 2014. The depositional environment and taphonomy of the Homerian “Aulacopleura shales” fossil assemblage near Lodĕnice, Czech Republic (Prague Basin, Perunican microcontinent). Bulletin of Geosciences 89:219238.Google Scholar
Jaanusson, V. 1975. Evolutionary processes leading to the trilobite suborder Phacopina. Fossils and Strata 4:209218.Google Scholar
Kihm, J.-H., Park, T.-Y., and Choi, D.-K.. 2013. Ontogeny of the ptychaspidid trilobite Quadraticephalus elongatus Kobayashi, 1935 from the Furongian (late Cambrian) Hwajeol Formation, Korea. Journal of Paleontology 87:379390.Google Scholar
Klingenberg, C. P., and Zimmerman, M.. 1992. Dyar’s rule and multivariate allometric growth in nine species of waterstriders (Heteroptera; Gerridae). Journal of the Zoological Society of London 227:453464.Google Scholar
Kobayashi, T. 1935. The Cambro-Ordovician Formations and Faunas of south Chosen. Palaeontology, part 3, Cambrian Faunas of south Chosen with a special study on the Cambrian trilobite genera and families. Journal of the Faculty of Science 4:49344.Google Scholar
Kobayashi, T., and Hamada, T.. 1968. A Devonian phacopid recently discovered by Mr. Charan Poothai in peninsular Thailand. Geology and Palaeontology of Southeast Asia 4:2228.Google Scholar
Laibl, L., Fatka, O., Crônier, C., and Budil, P.. 2014. Early ontogeny of the Cambrian trilobite Sao hirsuta from the Skryje-Týřovice Basin, Barrandian area, Czech Republic. Bulletin of Geosciences 89:293309.Google Scholar
Lee, D.-C., and Chatterton, B. D. E.. 2005. Protaspid ontogeny of Bolaspidella housensis (Order Ptychopariida, Class Trilobita), and other similar Cambrian protaspides. Transactions of the Royal Society of Edinburgh (Earth Sciences) 96:2141.Google Scholar
Lerosey-Aubril, R., and Feist, R.. 2005. Ontogeny of a new cyrtosymboline trilobite from the Famennian of Morocco. Acta Palaeontologica Polonica 50:449464.Google Scholar
Lespérance, P. J., and Sheenan, P. M.. 1987. Trilobites et Brachiopodes ashgilliens (Ordovicien supérieur) de l’“Assise” de Fosse, Bande de Sambre-Meuse (Belgique). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 57:91123.Google Scholar
Lu, Y.-H., and Wu, H.-J.. 1983. Ontogeny of the trilobite Dalmanitina (Dalmanitina) nanchengensis Lu. Palaeontologia Cathayana 1:123154.Google Scholar
Manda, Š. 2008. Trocholites Conrad, 1838 (Nautiloidea, Tarphycerida) in the Middle Ordovician of the Prague Basin and its palaeobiogeographical significance. Bulletin of Geosciences 83:327334.Google Scholar
Mikuláš, R. 1998a. Ordovician of the Barrandian area: reconstruction of the sedimentary basin, its benthic communities and ichnoassemblages. Journal of the Czech Geological Society 43:143159.Google Scholar
Mikuláš, R. 1998b. Trace fossils from the Letná Formation (Ordovician, Czech Republic). Sborník Geologických Věd, Paleontologie 34:525.Google Scholar
Osmólska, H. 1963. On some Famennian Phacopinae (Trilobita) from the Holy Cross Mountains (Poland). Acta Palaeontologica Polonica 8:495523.Google Scholar
Owen, D. D. 1852. Report of the Geological Survey of Wisconsin, Iowa and Minnesota. Lippencott, Grambo, and Co., Philadelphia.Google Scholar
Palmer, A. R. 1957. Ontogenetic development of two Olenellid trilobites. Journal of Paleontology 31:105128.Google Scholar
Park, T.-Y., and Choi, D.-K.. 2011. Constraints on using ontogenetic data for trilobite phylogeny. Lethaia 44:250254.Google Scholar
Pärnaste, H., and Bergström, J.. 2014. Lower to Middle Ordovician trilobite faunas along the Ural border of Baltica. Bulletin of Geosciences 89:431450.Google Scholar
Ramsköld, L. 1991. Pattern and process in the evolution of the Odontopleuridae (Trilobita). The Selenopeltinae and Ceratocephalinae. Transactions of the Royal Society of Edinburgh (Earth Sciences) 82:143181.Google Scholar
Raymond, P. E. 1905. Trilobite of the Chazy limestone. Annals of Carnegie Museum 3:328386.Google Scholar
Reed, F. R. 1905. The Classification of the Phacopidæ. Geological Magazine 2:172178.Google Scholar
Richter, R., and Richter, E.. 1926. Die Trilobiten des Oberdevons. Beiträge zur Kenntnis devonischer Trilobiten IV. Abhandlungen der preussischen geologischen Landesanstalt 99:1314.Google Scholar
Roemer, F. A. 1866. Beiträge zur geologischen Kenntnis des nordwestlichen Harzgebirges. Fünfte Abtheilung. Palaeontographica 13:201235.Google Scholar
Rohlf, F. J. 2006. TpsDig2, digitize landmarks and outlines, Version 2.10. Department of Ecology and Evolution, State University of New York at Stony Brook. http://life.bio.sunysb.edu/morph Google Scholar
Sandford, A. C., and Holloway, D. J.. 2006. Early Silurian phacopide trilobites from central Victoria, Australia. Memoirs of Museum Victoria 63:215255.Google Scholar
Shaw, F. C. 1968. Early Middle Ordovician (Chazy) trilobites of New York. New York State Museum and Science Service Memoir 17:1163.Google Scholar
Šnajdr, M. 1982. Bohemian representatives of the trilobite genera Kloucekia Delo, Phacopidina Bancroft, Sokhretia Hupé and Dalmanitina Reed. Věstnik Ústředního Ústavu Geologického 57:179182.Google Scholar
Šnajdr, M. 1990. Bohemian trilobites. Czech Geological Survey, Prague.Google Scholar
Storey, A. J., Thomas, A. T., and Owens, R.. 2016. The deep-water trilobite association of the Silurian Coldwell Siltstone Formation of northern England and its wider significance. Proceedings of the Yorkshire Geological Society 61:123.Google Scholar
Sun, Y. C. 1924. Contributions to the Cambrian faunas of North China. Palaeontologia Sinica Series B 1:297314.Google Scholar
Temple, J. T. 1952. The ontogeny of the trilobite Dalmanitina olini . Geological Magazine 89:251262.Google Scholar
Temple, J. T. 1957. Growth of the glabella of Dalmanitina olini . Geological Magazine 94:491497.Google Scholar
Vokáč, V., Hartl, F., David, M., Pavlovič, M., Doubrava, M., Kozák, V., and Grigar, V.. 2015. Notable findings of trilobites from the Ordovician (Dapingian–Sandbian) of the Prague Basin (Barrandian area, Czech Republic). Erica 22:141157.Google Scholar
Walcott, C. D. 1886. Second contribution to the studies on the Cambrian faunas of North America. United States Geological Survey Bulletin 30.Google Scholar
Walcott, C. D. 1899. Cambrian fossils of the Yellowstone National Park. United States Geological Survey Monograph 32:440478.Google Scholar
Webster, M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317:499502.Google Scholar
Whittington, H. B. 1956. Beecher’s supposed odontopleurid protaspis is a phacopid. Journal of Paleontology 30:104109.Google Scholar
Whittington, H. B., and Campbell, K. S. W.. 1967. Silicified Silurian trilobites from Maine. Bulletin of the Museum of Comparative Anatomy 135:447483.Google Scholar