Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T12:40:18.521Z Has data issue: false hasContentIssue false

Population size, extinction, and speciation: the fission effect in Neogene Bivalvia

Published online by Cambridge University Press:  08 April 2016

Steven M. Stanley*
Affiliation:
Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218

Abstract

The extinction of a species represents reduction of both geographic range and population size to zero. Most workers have focused on geographic range as a variable strongly affecting the vulnerability of established species to extinction, but Lyellian percentages for Neogene bivalve faunas of California and Japan suggest that population size is a more important variable along continental shelves. The data employed to reach this conclusion are Lyellian percentages for latest Pliocene (∼2 ma old) bivalve faunas of California and Japan (N = 245 species). These regions did not suffer heavy extinction during the recent Ice Age, and for each region the Lyellian percentage is 70%–71%.

Discrepancies in population size appear to explain the following differences in survivorship to the Recent (Lyellian percentage) for three pairs of subgroups: (1) burrowing nonsiphonate species (42%) versus burrowing siphonate species (84%), which suffer less heavy predation; (2) burrowing nonsiphonate species of small size (73%) versus burrowing nonsiphonate species of large body size (96%); (3) Pectinacea (30%) versus other epifauna (71%), which suffer less heavy predation. During the Mesozoic Era, when predation was less effective in benthic settings, mean species duration for the Pectinacea was much greater (∼20 ma).

Along the west coast of North and Central America, mean geographic range is greater for siphonate species of large body size than for siphonate species of small body size and greater still for pectinacean species. These ranges are inversely related to mean species longevity for the three groups, which indicates that geographic range is not of first-order importance in influencing species longevity. Species with nonplanktotrophic development neither exhibit narrow geographic ranges along the west coast of North and Central America nor have experienced high rates of extinction in California and Japan.

Rates of extinction are so high for Neogene pectinaceans and nonsiphonate burrowers that without enjoying high rates of speciation these groups could not exist at the diversities they have maintained during the Neogene Period. They are apparently speciating rapidly because of the fission effect: the relatively frequent generation of new species from populations that are fragmented by heavy predation. Thus, ironically, there may be a tendency for high rates of speciation to be approximately offset by high rates of extinction. Only if mean population size for species in a particular group becomes extremely small is it likely to result in a high rate of extinction and a low rate of speciation—and hence a dramatic decline of the group. The fission effect may contribute to the general correlation in the animal world between rate of speciation and rate of extinction.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, R. T. 1974. American Seashells. Van Nostrand Reinhold Co.; New York.Google Scholar
Addicott, W. O. 1966. Late Pleistocene marine paleoecology and zoogeography in central California. U.S. Geol. Surv. Prof. Pap. 523-C.Google Scholar
Allen, J. A. 1961. The development of Pandora inaequivalvis (Linné). J. Embryol. Exp. Morphol. 9:252268.Google Scholar
Bernard, F. R. 1974. Septibranchs of the Eastern Pacific (Bivalvia Anomalodesmata). Allan Hancock Monogr. Mar. Biol. 8.Google Scholar
Buzas, M. A. and Culver, S. J. 1984. Species duration and evolution: benthic Foraminifera on the Atlantic continental margin of North America. Science. 225:829830.CrossRefGoogle ScholarPubMed
Chanley, P. E. and Castagna, M. 1966. Larval development of the pelecypod Lyonsia hyalina. Nautilus. 79:123128.Google Scholar
Chinzei, K. 1961. Molluscan fauna of the Pliocene Sannohe Group of northeast Honshu, Japan. 2. The faunule of the Togawa Formation. J. Fac. Sci. Univ. Tokyo. 13:81131.Google Scholar
Chinzei, K. 1973. Omma-Manganjan molluscan fauna in the Futatsui area of northern Alcita, Japan. Paleontol. Soc. Japan Trans. Proc. N.S. 90:8194.Google Scholar
Chiinzei, K. 1980. Molluscan fauna of the Plio-Pleistocene Kakegawa Group: its composition and horizontal distribution. Japanese Nat. Sci. Mus. Mem. 13:1520.Google Scholar
Deméré, T. A. 1983. The Neogene San Diego Basin: A review of the marine Pliocene San Diego Formation. Pp. 187195. In: Larue, D. K. and Steel, R. J., eds. Cenozoic Marine Sedimentation, Pacific Margin, U.S.A. Soc. Econ. Paleontol. Mineral. Pacific Sec.Google Scholar
Dexter, R. W. 1947. The marine communities of a tidal inlet at Cape Ann, Massachusetts: a study in bio-ecology. Ecol. Monogr. 17:261294.CrossRefGoogle Scholar
Dhondt, A. V. 1971. Systematic revision of Entolium, Propeamussium (Amusiidae) and Syncyclonema (Pectinidae, Bivalvia, Mollusca) of the European Boreal Cretaceous. Inst. Roy. Sci. Nat. Belg. Bull. 47(32):195.Google Scholar
Dhondt, A. V. 1972a. Systematic revision of the Chlamydinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. 1. Camptonectes. Inst. Roy. Soc. Nat. Belg. Bull. 48(3):160.Google Scholar
Dhondt, A. V. 1972b. Systematic revision of the Chlamydinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. 2. Lyropecten. Inst. Roy. Sci. Nat. Belg. Bull. 48(7):181.Google Scholar
Dhondt, A. V. 1973a. Systematic revision of the Chlamydinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. 3. Chlamys and Mimachlamys. Inst. Roy. Sci. Nat. Belg. Bull. 49(1):1134.Google Scholar
Dhondt, A. V. 1973b. Systematic revision of the subfamily Neitheinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. Inst. Roy. Sci. Nat. Belg. Mém. 176.Google Scholar
Dhondt, A. V. 1976. Systematic revision of the Chlamydinae (Pectinidae, Bivalvia, Mollusca) of the European Cretaceous. 4. Merklinia. Inst. Roy. Sci. Nat. Belg. Bull. 51(7):138.Google Scholar
Diamond, J. M. 1984. “Normal” extinctions of isolated populations. Pp. 191246. In: Nitecki, M. H., ed. Extinctions. University of Chicago Press; Chicago.Google Scholar
Gilinsky, N. L. 1981. Stabilizing species selection in the Archaeogastropoda. Paleobiology. 7:316331.Google Scholar
Haffer, J. 1974. Avian speciation in tropical South America. Publ. Nuttall Ornithol. Club. 14:1380.Google Scholar
Hall, C. A. 1964. Shallow-water marine climates and molluscan provinces. Ecology. 45:226234.Google Scholar
Hallam, A. 1978. How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves. Paleobiology. 4:1625.CrossRefGoogle Scholar
Hansen, T. A. 1978. Larval dispersal and species longevity in lower Tertiary gastropods. Science. 199:885887.Google Scholar
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevities in neogastropods. Paleobiology. 6:193207.Google Scholar
Hatai, K., Masuda, K., and Suzuki, Y. 1961. A note on the Pliocene megafossil fauna from the Shimokita Peninsula, Aomori Prefecture, northeast Honshu, Japan. Saito Ho-on Kai Mus. Res. Bull. 30:1838.Google Scholar
Hertlein, L. G. and Grant, U. S. IV. 1972. The geology and paleontology of the marine Pliocene of San Diego, California 2b, Paleontology. San Diego Soc. Nat. Hist. Mem. 2b:143409.Google Scholar
Jablonski, D. and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev. 58u:2189.CrossRefGoogle Scholar
Jablonski, D. and Valentine, J. W. 1981. Onshore-offshore gradients in Recent Eastern Pacific shelf faunas and the paleobiogeographic significance. Pp. 441453. In: Scudder, G. G. E. and Reveal, J. L., eds. Evolution Today. Proc. 2d Internat. Congr. Syst. and Evol. Biol. Carnegie-Mellon University, Pittsburgh.Google Scholar
Jackson, J. B. C. 1972. The ecology of the molluscs of Thalassia communities, Jamaica, West Indies. II. Molluscan population variability along an environmental stress gradient. Mar. Biol. 14:304337.Google Scholar
Jackson, J. B. C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their biogeographic significance. Am. Nat. 104:541560.CrossRefGoogle Scholar
Johnson, A. L. A. 1984. The paleobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe. Zitteliana. 11.Google Scholar
Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous Bivalvia. Roy. Soc. Lond. Phil. Trans. 284B:277304.Google Scholar
Kauffman, E. G. 1983. Mass extinction within the Cretaceous: earthbound events for calibration of extraterrestrial effects. Geol. Soc. Am. Abstr. Progr. 15(6):608.Google Scholar
Keen, A. M. 1971. Sea Shells of Tropical West America. Stanford Univ. Press; Stanford, Calif.Google Scholar
Koch, C. F. 1980. Bivalve species duration, areal extent and population size in a Cretaceous sea. Paleobiology. 6:184192.Google Scholar
Levinton, J. S. 1974. Trophic group and evolution in bivalve molluscs. Palaeontol. 17:579585.Google Scholar
Levinton, J. S. and Ginzburg, L. 1984. Repeatability of taxon longevity in successive Foraminifera radiations and a theory of random appearance and extinction. Proc. Natl. Acad. Sci. 81:54785481.Google Scholar
MacArthur, R. H. 1972. Geographical Ecology. 269 pp. Harper & Row; New York.Google Scholar
Mackenzie, C. L., Merrill, A. S., and Serchuk, F. M. 1978. Scallop resources off the northeastern U.S. Coast, 1975. Mar. Fish. Rev. Pap. 1283:1923.Google Scholar
Meyer, D. L. and Macurda, D. B. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology. 3:7482.Google Scholar
Miller, R. R. 1950. Speciation in fishes of the genera Cyprinodon and Empertrichthys inhabiting the Death Valley region. Evolution. 4:155163.Google Scholar
Morton, B. 1981. The Anomalodesinata. Malacologia. 21:3560.Google Scholar
Olsen, A. M. 1955. Underwater studies on the Tasmanian commercial scallop, Notovola meridionalis (Tate) (Lamellibranchiata: Pectinidae). Austral. J. Mar. and Freshwater Res. 6:392409.CrossRefGoogle Scholar
Ordzie, C. J. and Garofalo, G. C. 1980. Predation, attack success, and attraction to the bay scallop, Argopecten irradians (Lamarck) by the oyster drill, Urosalpinx cinerea (Say). J. Exp. Biol. Ecol. 47:95100.Google Scholar
Palmer, A. R. 1984. Species cohesiveness and genetic control of shell color and form in Thais emarginata (Prosobranchia, Muricacea): preliminary results. Malacologia. 25:477491.Google Scholar
Paul, J. S., Brand, A. R., and Hoogesteger, J. N. 1981. Experimental cultivation of the scallops Chlamys opercularis (L.) and Pecten maximus (L.) using naturally produced spat. Aquaculture. 24:3144.Google Scholar
Ricketts, E. F. and Calvin, J. 1962. Between Pacific Tides. Stanford Univ. Press; Stanford, Calif.Google Scholar
Roe, R. B., Cummins, R., and Bullis, H. R. 1971. Calico scallop distribution, abundance, and yield off eastern Florida, 1967–1968. Natl. Mar. Fish. Serv., Fish Bull. 69:399409.Google Scholar
Sanders, H. L. 1958. Benthic studies in Buzzards Bay. I. Animal-sediment relationships. Limnol. Oceanogr. 3:245258.Google Scholar
Sanders, H. L., Goudsmit, E. M., Mills, E. L., and Hampson, G. E. 1962. A study of the intertidal fauna of Barnstable Harbor, Massachusetts. Limnol. Oceanogr. 7:6379.CrossRefGoogle Scholar
Sastry, A. N. 1974. Pelecypoda (excluding Ostreidae). Pp. 173292. In: Giese, A C. and Pearse, J. S., eds. Reproduction of Marine Invertebrates. V. Molluscs: Palecypods and Lesser Classes. Academic Press; New York.Google Scholar
Scheltema, R. S. 1977. Dispersal of marine invertebrate organisms. Pp. 73108. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Scheltema, R. S. 1978. On the relationship between dispersal of pelagic Veliger larvae and the evolution of marine prosebranch gastropods. Pp. 303322. In: Battaglia, B. and Beardmore, J. A., eds. Marine Organisms: Genetics, Ecology and Evolution. Plenum; New York.Google Scholar
Sellmer, G. P. 1967. Functional morphology and ecological life history of the gem clam, Gemma gemma (Eulamellibranchia: Veneridae). Malacologia. 5:137223.Google Scholar
Shuto, T. 1961. Paleontological study of the Miyazaki Group: a general account of the faunas. Kyushu Univ. Fac. Sci. Mem. 10D:73206.Google Scholar
Slobodkin, L. B. and Sanders, H. L. 1969. On the contribution of environmental predictability to species diversity. Brookhaven Symp. Biol. 22:8295.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. J. Paleontol. 46:165212.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits in the Bivalvia (Mollusca). Geol. Soc. Am. Mem. 125.Google Scholar
Stanley, S. M. 1973. Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals. Syst. Zool. 22:486506.Google Scholar
Stanley, S. M. 1974. What has happened to the articulate brachiopods. Geol. Soc. Am. Abstr. Progr. 6:966967.Google Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Natl. Acad. Sci. U.S.A. 72:646650.Google Scholar
Stanley, S. M. 1977. Trends, rates and patterns of evolution in the Bivalvia. Pp. 209250. In: Hallam, A., ed. Patterns of Evolution, as Illustrated by the Fossil Record. Elsevier; Amsterdam.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. W. H. Freeman; San Francisco.Google Scholar
Stanley, S. M. 1982. Species selection involving alternative character states: an approach to microevolutionary analysis. 3d N. A. Paleontol. Conv. Proc. 2:505510.Google Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the Western Atlantic bivalve fauna. Palaios. 1 (in press).Google Scholar
Stanley, S. M., Addicott, W. O., and Chinzei, K. 1980. Lyellian curves in paleontology: possibilities and limitations. Geology. 8:422426.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. and Campbell, L. D. 1981. Neogene mass extinction of Western Atlantic molluscs. Nature. 293:457459.Google Scholar
Stanley, S. M. and Newman, W. A. 1980. Competitive exclusion in evolutionary time: the case of the acorn barnacle. Paleobiology. 6:173183.Google Scholar
Strauch, F. 1968. Determination of Cenozoic sea-temperatures using Hiatella arctica (Linné). Palaeogeogr. Palaeoclimatol. Palaeoecol. 5:213233.Google Scholar
Taylor, J. D. 1970. Feeding habits of predatory gastropods in a Tertiary (Eocene) molluscan assemblage from the Paris Basin. Palaeontology. 13:255260.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of benthic marine communities. Science. 203:458461.Google Scholar
Valentine, J. W. 1966. Numerical analysis of marine molluscan ranges on the extratropical northeastern Pacific shelf. Limnol. Oceanogr. 11:198211.Google Scholar
Vanzolini, P. E. 1973. Paleoclimates, relief, and species multiplication in equatorial forests. Pp. 255258. In: Meggars, B. J., Ayensu, E. S., and Duckworth, W. D., eds. Tropical Forest Ecosystems in Africa and South America: A Comparative Review. Smithsonian Inst. Press; Washington, D.C.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology. 3:245258.Google Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76:6184.Google Scholar
Vrba, E. S. 1983. Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science. 221:387389.Google Scholar
Ward, P. D. and Signor, R. W. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology. 9:183198.Google Scholar
Wilbur, K. M. and Owen, G. 1964. Growth. Pp. 211242. In: Wilbur, K. M. and Yonge, C. M., eds. Physiology of the Mollusca. I. Academic Press; New York.Google Scholar
Yonge, C. M. 1969. Functional morphology and evolution within the Carditacea (Bivalvia). Proc. Malacol. Soc. Lond. 38:393527.Google Scholar