Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T19:17:20.741Z Has data issue: false hasContentIssue false

Pleistocene extinctions: the pivotal role of megaherbivores

Published online by Cambridge University Press:  08 April 2016

Norman Owen-Smith*
Affiliation:
Department of Zoology, University of the Witwatersrand, PO 2050 Wits, Johannesburg, South Africa

Abstract

Two alternative hypotheses have been advanced to explain the demise of about half of the mammalian genera exceeding 5 kg in body mass in the later Pleistocene. One hypothesis invokes climatic change and resulting habitat transformations. This fails to predict the increased likelihood of extinctions with increasing body size, greater severity in both North and South America than in Eurasia or Australia, lack of simultaneous extinctions in Africa and tropical Asia, and the absence of extinctions at the end of previous glacial periods. The other hypothesis invokes human predation as the primary cause. This fails to explain the simultaneous extinctions of a number of mammalian and avian species not obviously vulnerable to human overkill. I propose a “keystone herbivore” hypothesis, based on the ecology of extant African species of megaherbivore, (i.e., animals exceeding 1,000 kg in body mass). Due to their invulnerability to non-human predation on adults, these species attain saturation densities at which they may radically transform vegetation structure and composition. African elephant can change closed woodland or thicket into open grassy savanna, and create open gaps colonized by rapidly-regenerating trees in forests. Grazing white rhinoceros and hippopotamus transform tall grasslands into lawns of more nutritious short grasses. The elimination of megaherbivores elsewhere in the world by human hunters at the end of the Pleistocene would have promoted reverse changes in vegetation. The conversion of the open parklike woodlands and mosaic grasslands typical of much of North America during the Pleistocene to the more uniform forests and prairie grasslands we find today could be a consequence. Such habitat changes would have been detrimental to the distribution and abundance of smaller herbivores dependent upon the nutrient-rich and spatially diverse vegetation created by megaherbivore impact. At the same time these species would have become more vulnerable to human predation. The elimination of megaherbivore influence is the major factor differentiating habitat changes at the end of the terminal Pleistocene glaciation from those occurring at previous glacial-interglacial transitions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agenbroad, L. D. 1984. Hot Springs, South Dakota: entrapment and taphonomy of Columbian mammoth. Pp. 113127. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Anderson, A. 1984. The extinction of moa in southern New Zealand. Pp. 691707. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Anderson, E. 1984. Who's who in the Pleistocene: a mammalian bestiary. Pp. 4089. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Barnes, R. F. W. 1985. Woodland changes in Ruaha National Park (Tanzania) between 1976 and 1982. Afr. J. Ecol. 23:215222.Google Scholar
Bell, R. H. V. 1984. Notes of elephant-woodland interactions. Pp. 98103. In: Cumming, D. H. M. and Jackson, P., eds. The Status and Conservation of Africa's Elephants and Rhinos. IUCN; Gland.Google Scholar
Blueweiss, L., Fox, H., Kudzama, V., Nakashima, D., Peters, R., and Sams, S. 1978. Relationships between body size and some life history parameters. Oecologia (Berlin). 37:257272.CrossRefGoogle ScholarPubMed
Botkin, D. B., Mellilo, J. M., and Wu, L. S.-Y. 1981. How ecosystem processes are linked to large mammal population dynamics. Pp. 373388. In: Fowler, C. W. and Smith, T. D., eds. Dynamics of Large Mammal Populations. Wiley; New York. Bourlière, F.1965. Densities and biomasses of some ungulate populations in Eastern Congo and Ruanda, with notes on population structure and lion/ungulate ratios. Zoologica Africana. 1:199–207.Google Scholar
Brooks, P. M. and Macdonald, I. A. W. 1983. The Hluhluwe-Umfolozi Reserve: an ecological case history. Pp. 5178. In: Owen-Smith, R. N., ed. Management of Large Mammals in African Conservation Areas. Haum; Pretoria.Google Scholar
Coetzee, B. J., Engelbrecht, A. H., Joubert, S. P. J., and Retief, P. F. 1979. Elephant impact on Sclerocarya trees in Acacia nigrescens tropical plains thornveld of the Kruger National Park. Koedoe. 22:3960.CrossRefGoogle Scholar
Coley, P. D., Bryant, J. P., and Chapin, F. S. III. 1985. Resource availability and plant antiherbivore defense. Science. 230:895899.Google Scholar
Corfield, T. F. 1973. Elephant mortality in Tsavo National Park, Kenya. E. Afr. Wildl. J. 11:339368.Google Scholar
Cumming, D. H. M. 1981. Elephant and woodlands in Chizarira National Park, Zimbabwe. Pp. 347349. In: Jewell, P. A., Holt, S., and Hart, D., eds. Problems in Management of Locally Abundant Wild Mammals. Academic Press; New York.Google Scholar
Cumming, D. H. M. 1982. The influence of large herbivores on savanna structure in Africa. Pp. 217245. In: Huntley, B. J. and Walker, B. H., eds. Ecology of Tropical Savannas. Springer-Verlag; Berlin.CrossRefGoogle Scholar
Davies, S. 1985. Tiny elephants and giant mice. New Scientist, 3 Jan. Pp. 2527.Google Scholar
Dewar, R. E. 1984. Extinctions in Madagascar: the loss of the subfossil fauna. Pp. 574593. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Dublin, H. 1984. The Serengeti-Mara ecosystem. Swara. 7:813.Google Scholar
Eltringham, S. K. 1980. A quantitative assessment of range usage by large African mammals with particular reference to the effect of elephants on trees. Afr. J. Ecol. 18:5371.CrossRefGoogle Scholar
Field, C. R. and Laws, R. M. 1970. The distribution of the larger herbivores in the Queen Elizabeth National Park, Uganda. J. Appl. Ecol. 7:273294.CrossRefGoogle Scholar
Fisher, D. C. 1984. Mastodon butchery by North American Paleo-Indians. Nature. 308:271272.CrossRefGoogle Scholar
Fortelius, M. 1982. Ecological aspects of the dental functional morphology of the Plio-Pleistocene rhinoceroses of Europe. Pp. 163181. In: Kurtén, B., ed. Teeth: Form, Function and Evolution. Columbia Univ. Press; New York.Google Scholar
Graham, R. W. 1986. Plant-animal interactions and Pleistocene extinctions. Pp. 131154. In: Elliot, D. K., ed. Dynamics of Extinction. John Wiley and Sons, Inc.; New York.Google Scholar
Graham, R. W. and Lundelius, E. L. 1984. Coevolutionary disequilibrium and Pleistocene extinctions. Pp. 223249. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Gruhn, R. and Bryan, A. L. 1984. The record of Pleistocene megafaunal extinctions at Taima-taima, northern Venezuela. Pp. 128137. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Guidon, N. and Delibrias, G. 1986. Carbon–14 dates point to man in the Americas 32,000 years ago. Nature. 321:769772.Google Scholar
Guilday, J. E. 1984. Pleistocene extinction and environmental change: case study of the Appalachians. Pp. 250258. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Guthrie, R. D. 1984. Mosaics, allelochemics and nutrients: an ecological theory of late Pleistocene megafaunal extinctions. Pp. 259298. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Guy, P. R. 1981. Changes in biomass and productivity of wood lands in the Sengwa Research Area, Zimbabwe. J. Appl. Ecol. 8:507519.CrossRefGoogle Scholar
Haynes, C. V. 1982. Were Clovis progenitors in Beringia? Pp. 383398. In: Hopkins, D. M., Matthews, J. V., Schweger, C. E., and Young, S. B., eds. Paleoecology of Beringia. Academic Press; New York.CrossRefGoogle Scholar
Haynes, C. V. 1984. Stratigraphy and late Pleistocene extinction in the United States. Pp. 345353. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Hooijer, D. A. 1978. Rhinocerotidae. Pp. 371378. In: Maglio, V. J. and Cooke, H. B. S., eds. Evolution of African Mammals. Harvard Univ. Press; Cambridge, Mass.CrossRefGoogle Scholar
Hooijer, D. A. and Patterson, B. 1972. Rhinoceroses from the Pliocene of north-western Kenya. Bull. Mus. Compar. Zool. 144:126.Google Scholar
Hope, G. 1984. Australian environmental change: timing, direction, magnitude and rates. Pp. 681690. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Horton, D. R. 1984. Red kangaroos: last of the Australian mega-fauna. Pp. 639680. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Jachmann, H. and Bell, R. H. V. 1984. Why do elephants destroy woodland? African Elephant and Rhino Group Newsletter 3:910.Google Scholar
Jachmann, H. and Bell, R. H. V. 1985. Utilization by elephants of the Brachystegia woodlands of the Kasungu National Park, Malawi. Afr. J. Ecol. 23:245258.CrossRefGoogle Scholar
Kiltie, R. A. 1984. Seasonality, gestation time, and large mammal extinctions. Pp. 299314. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Klein, R. G. 1977. The ecology of early man in Southern Africa. Science. 197:115126.CrossRefGoogle ScholarPubMed
Klein, R. G. 1984a. Mammalian extinctions and Stone Age people in Africa. Pp. 553573. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Klein, R. G. 1984b. The large mammals of southern Africa: late Pleistocene to Recent. Pp. 107146. In: Klein, R. G., ed. Southern African Prehistory and Paleoenvironments. Balkema; Rotterdam.Google Scholar
Kurtén, B. 1971. The Age of Mammals. 250 pp. Weidenfeld and Nicolson; London.Google Scholar
Kurtén, B. and Anderson, E. 1980. Pleistocene Mammals of North America. Columbia University Press; New York.Google Scholar
Laws, R. M., Parker, I. S. C., and Johnstone, R. C. B. 1975. Elephants and Their Habitats. The Ecology of Elephants in North Bunyoro, Uganda. 376 pp. Clarendon Press; Oxford.Google Scholar
Lock, J. M. 1972. The effect of hippopotamus grazing on grasslands. J. Ecol. 60:445467.Google Scholar
Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. I., Korotkevich, Y. S., and Kotlyakov, V. M. 1985. A 150,000-year climate record from Antarctic ice. Nature. 316:591596.Google Scholar
Maglio, V. J. 1978. Patterns of faunal evolution. Pp. 603619. In: Maglio, V. J. and Cooke, H. B. S., eds. Evolution of African Mammals. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Markgraf, V. 1985. Late Pleistocene faunal extinction in southern Patagonia. Science. 228:11101112.Google Scholar
Martin, P. S. 1984a. Prehistoric overkill: the global model. Pp. 354403. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Martin, P. S. 1984b. Catastrophic extinctions and late Pleistocene blitzkrieg: two radiocarbon tests. Pp. 153189. In: Nitecki, M., ed. Extinctions. Univ. of Chicago Press; Chicago, Illinois.Google Scholar
Martin, P. S. and Klein, R. G. (eds.). 1984. Quaternary Extinctions. 892 pp. University of Arizona Press; Tucson, Arizona.Google Scholar
Mead, J. J. and Meltzer, D. J. 1984. North American late Quaternary extinctions and the radiocarbon record. Pp. 440450. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Mueller-Dombois, D. 1972. Crown distortion and elephant distribution in the woody vegetation of Ruhunu National Park, Ceylon. Ecology. 53:208226.Google Scholar
Mukinya, J. G. 1977. Feeding and drinking habits of the black rhinoceros in Masai Mara Game Reserve. E. Afr. Wildl. J. 11:385400.CrossRefGoogle Scholar
Muller-Beck, H. 1982. Late Pleistocene man in northern Alaska and the mammoth-steppe biome. Pp. 329352. In: Hopkins, D. M., Matthews, J. V., Schweger, C. S., and Young, S. B., eds. The Paleoecology of Beringia. Academic Press; New York.Google Scholar
Naylor, J. N., Caughley, G. J., Abel, N. O., and Liberg, O. N. 1973. Luangwa Valley Conservation and Development Project, Zambia. Game Management and Habitat Manipulation. 258 pp. FAO; Rome.Google Scholar
Owen-Smith, G. 1986. The Kaokoveld, South West Africa/Namibia's threatened wilderness. Afr. Wildl. 40:104113.Google Scholar
Owen-Smith, N.In Press. Megaherbivores. The Influence of Very Large Body Size on Ecology. Cambridge Univ. Press; Cambridge.Google Scholar
Parker, I. S. C. 1983. The Tsavo story: an ecological case history. Pp. 3750. In: Owen-Smith, R. N., ed. Management of Large Mammals in African Conservation Areas. Haum; Pretoria.Google Scholar
Pellew, R. A. 1983. Modelling and the systems approach to management problems: the Acacia/elephant problem in the Serengeti. Pp. 93114. In: Owen-Smith, R. N., ed. Management of Large Mammals in African Conservation Areas. Haum; Pretoria.Google Scholar
Shackleton, N. J., Hall, M. A., Line, J., and Shuxi, Cang. 1983. Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature. 306:319322.Google Scholar
Stebbins, G. L. 1981. Coevolution of grasses and herbivores. Ann. Missouri Bot. Gard. 68:7586.Google Scholar
Thompson, P. J. 1975. The role of elephants, fire and other agents in the decline of a Brachystegia boehmi woodland. J. Sth. Afr. Wildl. Mgmt. Ass. 5:1118.Google Scholar
Thornton, D. D. 1971. The effect of complete removal of hippopotamus on grassland in the Queen Elizabeth National Park, Uganda. E. Afr. Wildl. J. 9:4755.Google Scholar
Trotter, M. M. and McCulloch, B. 1984. Moas, men and middens. Pp. 708727. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
van Wyk, P. and Fairall, N. 1969. The influence of the African elephant on the vegetation of the Kruger National Park. Koedoe. 12:5789.Google Scholar
Vereshchagin, N. K. and Baryshnikov, G. T. 1984. Quaternary mammalian extinctions in northern Eurasia. Pp. 483516. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
Volman, T. P. 1984. Early prehistory of southern Africa. Pp. 169220. In: Klein, R. G., ed. Southern African Prehistory and Paleoenvironments. Balkema; Rotterdam.Google Scholar
Vrba, E. S. 1985. African Bovidae: evolutionary events since the Miocene. S. Afr. J. Sci. 81:263266.Google Scholar
Walker, B. H., Ludwig, D., Holling, C. S., and Peterman, R. M. 1981. Stability of semi-arid grazing systems. J. Ecol. 69:473498.Google Scholar
Walker, B. H., Emslie, R. H., Owen-Smith, N., and Scholes, R. J.In Press. To cull or not to cull: lessons from a southern African drought. J. Appl. Ecol.Google Scholar
Webb, S. D. 1984. Ten million years of mammalian extinctions in North America. Pp. 189210. In: Martin, P. S. and Klein, R. G., eds. Quaternary Extinctions. University of Arizona Press; Tucson, Arizona.Google Scholar
West, F. H. 1984. The antiquity of man in America. Pp. 364382. In: Wright, H. G., ed. Late-Quaternary Environments of the United States. Vol. 1. The Late Pleistocene, ed. Porter, S. C.Univ. of Minnesota Press; Minneapolis, Minnesota.Google Scholar
Wright, H. E. (ed.). 1984. Late Quaternary Environments of the United States. Vol. 1. The Late Pleistocene, ed. Porter, S. C.Univ. of Minnesota Press; Minneapolis, Minnesota.Google Scholar
Yurtsev, B. A. 1982. Relicts of the xerophyte vegetation of Beringia in northeastern Asia. Pp. 157178. In: Hopkins, D. M., Matthews, J. V., Schweger, C. S., and Young, S. B., eds. The Paleoecology of Beringia. Academic Press; New York.Google Scholar