Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T14:15:30.806Z Has data issue: false hasContentIssue false

Patterns of phylogeny and rates of evolution in fossil horses: hipparions from the Miocene and Pliocene of North America

Published online by Cambridge University Press:  08 February 2016

Bruce J. MacFadden*
Affiliation:
Florida State Museum, University of Florida, Gainesville, Florida 32611

Abstract

In North America, hipparion horses consisted of four distinct genera, Hipparion, Neohipparion, Nannippus, and Cormohipparion, known from the medial Miocene to the late Pliocene, ca. 15.5–2 ma ago. The speciation mode is determined for 10 of the 16 valid hipparion species; 50% (5) seem to have resulted from anagenesis and 50% (5) from cladogenesis. Roughly contemporaneous species of the four hipparion genera seem to proceed through similar evolutionary stages of cranial and dental characters. The mean hipparion species longevity is 3.3 ma (N = 16); the mean generic longevity is 8.4 ma (N = 4). Only two species become extinct in less than 2 ma; extinction occurs at a rate of ca. 470 μmacarthurs for species with durations between 2 and 5 ma. For selected dental characters, mean evolutionary rates (for the 16 species) were between .08 darwins (d) and .03 d with crown height evolving most rapidly. Despite the commonly held notion that fossil horses evolved rapidly, these data suggest normal or average (horotelic) evolution for hipparions, which is not surprising because they were already established in the grazing adaptive zone during their history.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

deBeer, G. R. 1954. Archaeopteryx and Evolution. Adv. Sci. 42:111.Google Scholar
Durham, J. W. 1970. The fossil record and the origin of the Deuterostomata. Proc. No. Am. Paleontol. Conv. 1969 H:11041132.Google Scholar
Eisenberg, J. F. 1981. The Mammalian Radiations. Univ. Chicago Press; Chicago. 610 pp.Google Scholar
Eisenmann, V. 1981. Les charactères évolutifs des crânes d'Hipparion s. l.. (Mammalia, Perissodactyla) et leur interpretation. Comptes Rendus Acad. Sci., Paris. 293:735738.Google Scholar
Flynn, J. J., MacFadden, B. J., and McKenna, M. C. 1984. Land-mammal ages, faunal heterochrony, and temporal resolution in Cenozoic terrestrial sequences. J. Geol. 92:687705.CrossRefGoogle Scholar
Forsten, A.-M. 1982. The status of the genus Cormohipparion Skinner and MacFadden (Mammalia, Equidae). J. Paleontol. 56(6):13321335.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. Am. J. Sci. 276:128.CrossRefGoogle Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science. 222:159161.CrossRefGoogle ScholarPubMed
Gould, S. J. 1984. Smooth curve of evolutionary rate: a psychological and mathematical artifact. Science. 226:994995.CrossRefGoogle Scholar
Gregory, W. K. 1920. On the anatomy of the preorbital fossae of Equidae and other ungulates. Bull. Am. Mus. Nat. Hist. 62:265284.Google Scholar
Haldane, J. B. S. 1949. Suggestions as to quantitative measurements of rates of evolution. Evolution. 3:5156.CrossRefGoogle ScholarPubMed
Kennedy, W. J. 1977. Ammonite evolution. Pp. 251304. In: Hallam, A., ed. Patterns of Evolution. Elsevier Scientific Publ. Co.; Amsterdam.Google Scholar
Kurten, B. 1953. On the variation and population dynamics of fossil and Recent mammal populations. Acta Zool. Fennica. 76:1122.Google Scholar
MacFadden, B. J. 1984a. Systematics and phylogeny of Hipparion, Neohipparion, Nannippus, and Cormohipparion (Mammalia, Equidae) from the Miocene and Pliocene of the New World. Bull. Am. Mus. Nat. Hist. 179(1):1196.Google Scholar
MacFadden, B. J. 1984b. Astrohippus and Dinohippus from the Yepomera Local Fauna (Hemphillian, Mexico) and implications for the phylogeny of one-toed horses. J. Vert. Paleontol. 4(2):273283.CrossRefGoogle Scholar
MacFadden, B. J. 1985. Late Hemphillian horses (Mammalia, Equidae) from the Bone Valley Formation of Central Florida. J. Paleontol. In press.CrossRefGoogle Scholar
MacFadden, B. J. and Bakr, A. 1979. The horse Cormohipparion theobaldi from the Neogene of Pakistan, with comments on Siwalik hipparions. Palaeontology. 22:439447.Google Scholar
MacFadden, B. J. and Skinner, M. F. 1982. Hipparion horses and modern phylogenetic interpretation: Comments on Forsten's view of Cormohipparion. J. Paleontol. 56(6):13361342.Google Scholar
Matthew, W. D. 1926. The evolution of the horse: A record and its interpretation. Q. Rev. Biol. 1:130185.CrossRefGoogle Scholar
Ozawa, T. 1975. Evolution of Lepidocyclina multiseptata (Permian Foraminifera) in East Africa. Mem. Fac. Sci., Kyushu Univ. 23:117164.Google Scholar
Raup, D. M. 1975. Taxonomic survivorship curves and Van Valen's Law. Paleobiology. 1:8296.CrossRefGoogle Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology. 4:115.CrossRefGoogle Scholar
Rickards, R. B. 1977. Patterns of evolution in the graptolites. Pp. 333358. In: Hallam, A., ed. Patterns of Evolution. Elsevier Scientific Publ. Co.; Amsterdam.Google Scholar
Schopf, T. J. M. 1981. Punctuated equilibrium and evolutionary stasis. Paleobiology. 7(2):156166.CrossRefGoogle Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic versus morphological rates of evolution: influence of morphologic complexity. Paleobiology. 1:6370.CrossRefGoogle Scholar
Schuchert, C. and LeVene, C. M. 1940. O. C. Marsh—Pioneer in Paleontology. Yale Univ. Press; New Haven. 541 pp.Google Scholar
Siegel, S. 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill Book Co.; New York. 312 pp.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press; New York. 434 pp.CrossRefGoogle Scholar
Skinner, M. F. and MacFadden, B. J. 1977. Cormohipparion N. Gen. (Mammalia, Equidae) from the North American Miocene (Barstovian-Clarendonian). J. Paleontol. 51(5):912926.Google Scholar
Sokal, R. R. and Rohlf, F. J. 1981. Biometry: The Principles and Practice of Statistics in Biological Research. W. H. Freeman; San Francisco. 857 pp.Google Scholar
Stanley, S. M. 1978. Chronospecies' longevities, the origin of genera, and the punctuational model of evolution. Paleobiology. 4(1):2640.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: Patterns and Process. W. H. Freeman; San Francisco. 332 pp.Google Scholar
Stirton, R. A. 1940. Phylogeny of North American Equidae. Univ. Calif. Publ. Geol. Sci. 25:165198.Google Scholar
Stirton, R. A. 1947. Observations on evolutionary rates in hypsodonty. Evolution. 1:3241.CrossRefGoogle Scholar
Tedford, R. H., Galusha, T., Skinner, M. F., Taylor, B. E., Fields, R. W., Macdonald, J. R., Patton, T. H., Rensberger, J. M., and Whistler, D. P. In press. Faunal succession and biochronology of the Arikareean through Hemphillian interval (late Oligocene through late Miocene epochs), North America. In: Woodburne, M. O., ed. Vertebrate Paleontology as a Discipline in Geochronology. Univ. California Press; Berkeley.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:130.Google Scholar
Webb, S. D. 1977. A history of savanna vertebrates in the New World. Part 1. North America. Ann. Rev. Ecol. Syst. 8:355380.CrossRefGoogle Scholar
Webb, S. D. 1984. The rise and fall of the late Miocene ungulate fauna in North America. Pp. 267306. In: Nitecki, M. H., ed. Coevolution. Univ. Chicago Press; Chicago.Google Scholar
Woodburne, M. O. and MacFadden, B. J. 1982. A reappraisal of the systematics, biogeography, and evolution of fossil horses. Paleobiology. 8(4):315327.CrossRefGoogle Scholar
Woodburne, M. O., MacFadden, B. J., and Skinner, M. F. 1981. The North American “Hipparion” Datum and implications for the Neogene of the Old World. Géobios. 14:493524.CrossRefGoogle Scholar