Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T18:00:56.986Z Has data issue: false hasContentIssue false

Ontogeny of Trimerocephalus lelievrei (Trilobita, Phacopida), a representative of the Late Devonian phacopine paedomorphocline: a morphometric approach

Published online by Cambridge University Press:  20 May 2016

Catherine Crônier
Affiliation:
Institut des Sciences de l'Evolution, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France. E-mail: [email protected]
Sabrina Renaud
Affiliation:
Institut des Sciences de l'Evolution, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France. E-mail: [email protected]
Raimund Feist
Affiliation:
Institut des Sciences de l'Evolution, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France. E-mail: [email protected]
Jean-Christophe Auffray
Affiliation:
Institut des Sciences de l'Evolution, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France. E-mail: [email protected]

Abstract

A detailed morphometric approach based on size and on outline analyses has been used on an exceptionally well-preserved assemblage of silicified trilobite exuvia, recovered from a Late Devonian limestone from southeastern Morocco. The material comprises a series of late larval to postlarval growth stages belonging to a single phacopine species, Trimerocephalus lelievrei Crônier and Feist, 1997.

Plurimodality of size distribution has allowed us to discriminate postlarval instars. Distinct dimensional classes of isolated parts are obtained using the intertooth distances on the posterior pygidial margin and the internotch distances in the cephalic vincular furrow, which are functionally linked during trilobite enrollment. Morphometric analysis of development permitted demonstration of progressive shape change in agreement with ontogenetic ordination and a comparison of the timing of size and shape changes. The main shape changes appear to occur early in development, and once the “adult” morphology is obtained, size increases significantly. The growth rate during ontogeny is estimated by analogy with extant deep-sea crustaceans. Exponential size increase resulting from constant duration of intermolt periods may be regarded as a life history strategy to compete in a nutrient-impoverished offshore environment. The particular phacopine mode of molting, which involves the opening of the neck joint after ankylosis of the facial sutures, occurred in Trimerocephalus lelievrei between the first two postlarval instars, later than in its ancestor. Trimerocephalus lelievrei occupies an intermediate position within the phacopine paedomorphocline as indicated by the delayed onset of ankylosis.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296317.Google Scholar
Chatterton, B. D. E. 1971. Taxonomy and ontogeny of Siluro-Devonian trilobites from near Yass, New South Wales. Palaeontographica A 137: 1108.Google Scholar
Chlupác, I. 1977. The phacopid trilobites of the Silurian and Devonian of Czecholoslovakia. Vydal Ustredni ustav geologicky 43: 1164.Google Scholar
Clarkson, E. N. K. 1979. Invertebrate palaeontology and evolution. Allen and Unwin, London.Google Scholar
Crampton, J. S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28: 179186.Google Scholar
Crônier, C. and Feist, R. 1997. Morphologie et évolution ontogénétique de Trimerocephalus lelievrei nov. sp., premier trilobite phacopidé aveugle du Famennien nord-africain. Geobios, Mémoire Spécial 20: 161170.Google Scholar
Dodd, J. R. and Stanton, R. J. Jr. 1990. Paleoecology: concepts and applications. Wiley, New York.Google Scholar
Eldredgel, N. 1972. Systematics and evolution of Phacops rana (Green 1832) and Phacops iowensis Delo, 1935 (Trilobita) from the Middle Devonian of North America. Bulletin of the American Museum of Natural History 147: 45114.Google Scholar
Feist, R. 1991. The Late Devonian trilobite crises. Historical Biology 5: 197214.Google Scholar
Feist, R. 1995. Effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites. Pp. 225244. in McNamara, K. J. ed. Evolutionary change and heterochrony. Wiley, New York.Google Scholar
Feist, R. and Clarkson, E. N. K. 1989. Environmentally controlled phyletic evolution, blindness and extinction in Late Devonian tropidocoryphine trilobites. Lethaia 22: 359373.CrossRefGoogle Scholar
Ferson, S., Rohlf, F. J., and Koehn, R. K. 1985. Measuring shape variation of two-dimensional outlines. Systematic Zoology 34: 5968.Google Scholar
Foote, M. 1989. Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63: 880885.CrossRefGoogle Scholar
Foote, M. 1991. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34: 461485.Google Scholar
Fortey, R. A. and Owens, R. M. 1990. Trilobita. Pp. 121142. in McNamara, K. J. ed. Evolutionary trends Belhaven, London.Google Scholar
Freeman, J. A., West, T. L., and Costlow, J. D. 1983. Postlarval growth in juvenile Rhithropanopeus harrisii. Biological Bulletin 165: 409415.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Henningsmoen, G. 1975. Moulting in trilobites. Fossils and Strata 4: 179200.Google Scholar
Hessler, R. R. and Newman, W. A. 1975. A trilobitomorph origin for the Crustacea. Fossils and Strata 4: 437459.Google Scholar
Hewett, C. J. 1974. Growth and moulting in the common lobster (Homarus vulgaris Milne-Edwards). Journal of the Marine Biological Association of the United Kingdom 54: 379391.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the Late Cambrian trilobite Dikelocephalus. Smithsonian Contributions to Paleobiology 79: 189.CrossRefGoogle Scholar
Hunt, A. S. 1967. Growth, variation, and instar development of an Agnostid trilobite. Journal of Paleontology 41: 203208.Google Scholar
Hupé, P. 1953. Classification des trilobites. Annales de Paléontologie 39: 1110.Google Scholar
Jahnke, H. 1969. Phacops zinkeni F. A. Roemer 1843—ein Beispiel für eine ontogenetische Entwicklung bei Phacopiden (Trilobitae, Unterdevon). Neues Jahrbuch für Geologie und Paläontologie 133: 309324.Google Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of American Bulletin 96: 567587.Google Scholar
Khmeleva, N. N. and Goloubev, A. P. 1986. La production chez les crustacés: rôle dans les écosystèmes et utilisations. IFREMER, Brest, France.Google Scholar
Kuhl, F. P. and Giardina, C. R. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 259278.Google Scholar
Marcus, L. F. 1993. Some aspects of multivariate statistics for morphometrics. Pp. 95130. in Marcus, L. F., Bello, E., Garcia-Valdecasas, A. eds. Contributions to morphometrics Museo Nacional de Ciencas Naturales, Madrid.Google Scholar
Maksimova, Z. A. 1955. Trilobity srednego i verchnego devona Urala i severnych Mugodzar. Trudy useso-jusn.nautschno-issled. geological Institute VSEGEI. 3: 1263.Google Scholar
McGoff, H. J. 1991. The hydrodynamics of conodont elements. Lethaia 24: 235247.CrossRefGoogle Scholar
McKinney, M. L. and McNamara, K. J. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.CrossRefGoogle Scholar
McNamara, K. J. 1981. Paedomorphosis in Middle Cambrian xystridurine trilobites from northern Australia. Alcheringa 5: 209224.Google Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology 8: 130142.Google Scholar
McNamara, K. J. 1983. Progenesis in trilobites. Pp. 5968. in Briggs, D. E. G., Lane, P. D. eds. Trilobites and other arthropodes: papers in honour of H. B. Whittington. F.R.S. Special Papers in Palaeontology 31.Google Scholar
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology 60: 413.Google Scholar
Osmólska, H. 1963. On some Famennian Phacopineae (Trilobita) from the Holy Cross Mountains (Poland). Acta Palaeontologica Polonica 8: 495523.Google Scholar
Passano, L. M. 1960. Molting and its control. Pp. 473536. in Waterman, T. H. ed. The physiology of crustacea. I. Academic Press, New York.Google Scholar
Ramsköld, L. 1988. Heterochrony in Silurian phacopid trilobites as suggested by the ontogeny of Acernaspis. Lethaia 21: 307318.Google Scholar
Renaud, S., Michaux, J., Jaeger, J-J., and Auffray, J-C. 1996. Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology 22: 255265.Google Scholar
Richter, R. 1937. Die “Salter'sche Einbettung” als Folge und Kennzeichen des Häutungs Vorgangs. Senckenbergiana 19: 413431.Google Scholar
Richter, R. and Richter, E. 1926. Die Trilobiten des Oberdevons. Beiträge zur Kenntnis devonischer Trilobiten IV. Abhandlungen der preussischen geologischen Landesanstalt. 99: 1314.Google Scholar
Richter, R. 1955. 1. Trilobiten aus der Prolobites-Stufe III. 2. Phylogenie der oberdevonischen Phacopidae. Senckenbergiana lethaea 36: 4972.Google Scholar
Rohlf, F. J. 1973. Algorithm 76. Hierarchical clustering using the minimum spanning tree. Computer Journal 16: 9395.Google Scholar
Rohlf, F. J. 1975. Generalization of the gap test for the detection of multivariate outliers. Biometrics 31: 93101.CrossRefGoogle Scholar
Rohlf, F. J. 1993. NTSYS-Pc; numerical taxonomy and multivariate analysis system, Version 1.80. Exeter Software, Setauket, N.Y.Google Scholar
Rohlf, F. J. and Archie, J. W. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology 33: 302317.Google Scholar
Rohlf, F. J. and Marcus, L. F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8: 129132.Google Scholar
Sarda, F. and Cartes, J. E. 1993. Relationship between size and depth in decapod crustacean populations on the deep slope in the western Mediterranean. Deep-Sea Research I 40: 23892400.Google Scholar
Sarda, F. and Demestre, M. 1985. Determination of the intermoult stages in Aristeus antennatus (Risso, 1816) by setal development. Rapports et Procès-Verbaux des Réunions. Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée 29: 305307.Google Scholar
Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
Speyer, S. E. 1985. Moulting in phacopid trilobites. Transactions of the Royal Society of Edinburgh 76: 239259.CrossRefGoogle Scholar
Speyer, S. E. and Chatterton, B. D. E. 1989. Trilobite larvae and larval ecology. Historical Biology 3: 2760.Google Scholar
Wendt, J., Aigner, T., and Neugebauer, J. 1984. Cephalopod limestones deposition on a shallow pelagic ridge: the Tafilalt Platform (Upper Devonian, eastern Anti-Atlas, Morocco). Sedimentology 31: 601625.CrossRefGoogle Scholar
Whittington, H. B. 1957. The ontogeny of Trilobites. Biological Reviews 32: 421469.Google Scholar
Whittington, H. B. 1992. Trilobites. Boydell, Woodbridge, England.Google Scholar