Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T18:19:49.369Z Has data issue: false hasContentIssue false

On the heterocercal tail in sharks

Published online by Cambridge University Press:  08 April 2016

Keith Stewart Thomson*
Affiliation:
Department of Biology, and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06520

Abstract

A new account of the mechanical action of the heterocercal tail in fishes is given, developed from study of the swimming of sharks. The heterocercal tail is capable of delivering a thrust that can be oriented in a wide range of angles in the vertical plane. The orientation results from a balance of forces acting in the tail. Normally the heterocercal tail delivers neither an epibatic nor a hypobatic thrust, but rather one directly through the center of gravity of the fish. On the basis of the new account, predictions concerning the shape and proportions of the heterocercal tail are made and tested.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alborn, F. 1896. Ueber die Bedeutung der Heterocerkie und ähnlicher unsymmetrischer Schwanzformen schwimmender Wirbelthiere für die Ortsbewegung. Z. Wiss. Zool. 61:115.Google Scholar
Affleck, R. J. 1950. Some points in the function, development and evolution of the tail in fishes. Proc. Zool. Soc. Lond. 120:349368.Google Scholar
Aleev, Y. G. 1963. Function and Gross Morphology in Fish. 268 pp. Akad. Sci. USSR Sevastopol Biol. Stn. (Engl. trans.) Isr. Program for Sci. Transl. Jerusalem, 1969.Google Scholar
Alexander, R. McN. 1965. The lift produced by the heterocercal tail of Selachii. J. Exp. Biol. 43:131138.Google Scholar
Alexander, R. McN. 1967. Functional Design in Fishes. 160 pp. Hutchinson; London.Google Scholar
Bigelow, H. B. and Schroeder, W. C. 1948. The Fishes of the Western North Atlantic. No. 1, Part 1. Lancelets, Cyclostomes and Sharks. 576 pp. Sears Found. for Mar. Res.; New Haven.Google Scholar
Breder, C. M. 1926. The locomotion of fishes. Zoologica. 4:159297.Google Scholar
Compagno, L. J. V. 1974. Interrelationships of living elasmobranchs. In: Greenwood, P. H., et al., eds. Interrelationships of Fishes. Zool. J. Linn. Soc. Lond. 53, Suppl. 1:1561.Google Scholar
Daniel, J. F. 1934. The Elasmobranch Fishes. 332 pp. Univ. Calif. Press; Berkeley, Calif.Google Scholar
Gray, J. 1933. Studies in animal locomotion. I. The movement of fish with special reference to the eel. J. Exp. Biol. 10:88104.Google Scholar
Grove, A. J. and Newell, G. E. 1936. A mechanical investigation into the effectual action of the caudal fin of some aquatic vertebrates. Annu. Mag. Nat. Hist. (10), 17:280290.Google Scholar
Harris, J. E. 1936. The role of the fins in the equilibrium of the swimming fish. I. Windtunnel tests on a model of Mustelus canis (Mitchill). J. Exp. Biol. 13:474493.Google Scholar
Harris, J. E. 1938. The role of the fins in the equilibrium of the swimming fish. II. The role of the pelvic fins. J. Exp. Biol. 15:3247.Google Scholar
Klauswitz, W. 1962. Wie schwimmen Heifische? Nat. Mus., Frankf. 92:219226.Google Scholar
Klauswitz, W. 1965. Die Bewungsweise der Geigenrochen aus funktioneller und stammesgeschichtlicher Sicht. Nat. Mus. 95:97108.Google Scholar
Lighthill, M. J. 1969. Hydromechanics of aquatic animal propulsion. Annu. Rev. Fluid Mech. 1:413446.Google Scholar
Magnan, A. 1929. Les charactéristiques géometriques set physiques des poissons. Annu. Sci. Nat. Zool. 12:5133.Google Scholar
le Mare, D. 1936. Reflex and rhythmical movements in the dogfish. J. Exp. Biol. 13:429442.Google Scholar
Marey, M. 1893. Des mouvements de natation de la raie. C. R. Acad. Sci. Paris. 116:7781.Google Scholar
Mivart, St. G. 1879. Notes on the fins of elasmobranchs, with considerations on the nature and homologies of vertebrate limbs. Trans. Zool. Soc. Lond. 10:439483.Google Scholar
Ryder, J. A. 1886. On the origin of heterocercy and the evolution of the fins and fin rays of fishes. Rep. U.S. Comm. Fish and Fisheries. 1884:9811107.Google Scholar
Schmalhausen, I. I. 1912. Zur Morphologie der unpaaren Flossen. II. Bau und Phylogenese der unpaaren Flossen und insbesonders der Schwanzflosse der Fische. Z. Wiss. Zool. 104:180.Google Scholar
Schmalhausen, I. I. 1916. On the functions of the fins in fish. Rev. Zool. Russe. Moscow. 1:185214. (Engl. summ.) Not seen.Google Scholar
Schultze, F. E. 1894. Uber die Abwartsbeugung des Schwartzteiles der Wirbelsäule bei Ichthyosauren. Sitz. Akad. Wiss. Berlin. 1894:513514. Not seen.Google Scholar
Simons, J. R. 1970. The direction of the thrust produced by the heterocercal tails of two dissimilar elasmobranchs: the Port Jackson sharks, Heterodontus portusjacksoni (Meyer), and the piked dogfish, Squalus megalops (Macleay). J. Exp. Biol. 52:95107.Google Scholar
Thomson, K. S. 1971. The adaptation and evolution of early fishes. Q. Rev. Biol. 46:139166.CrossRefGoogle Scholar
Zangerl, R. 1974. Interrelationships of early chondrichthyans. In: Greenwood, P. H., et al., eds. Interrelationship of Fishes. Zool. J. Linn. Soc. Lond. 53, Suppl. 1:114.Google Scholar