Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T18:24:58.215Z Has data issue: false hasContentIssue false

New evidence for the lack of C4 grassland expansions during the early Pliocene at Langebaanweg, South Africa

Published online by Cambridge University Press:  08 April 2016

Tamara A. Franz-Odendaal
Affiliation:
Department of Zoology, University of Cape Town, Rondebosch 7700, South Africa. E-mail: [email protected]
Julia A. Lee-Thorp
Affiliation:
Department of Archeometry, University of Cape Town, Rondebosch 7700, South Africa. E-mail: [email protected]
Anusuya Chinsamy
Affiliation:
Iziko Museums of Cape Town, Post Office Box 61, Cape Town 8000, South Africa. E-mail: [email protected] Department of Zoology, University of Cape Town, Rondebosch 7700, South Africa. E-mail: [email protected]

Abstract

Major C4 grass expansions during the late Miocene in both the Northern and Southern Hemispheres had a major impact on biological communities. We report that the diverse terrestrial fauna of Langebaanweg, South Africa, existed in a local environment that remained C3-dominated during the late Neogene (~5 Ma). In contrast, other Southern Hemisphere sites at similar latitudes show a clear shift to C4 grasslands well before 5 Ma. Our results are based on stable isotope analyses of enamel carbonate from four artiodactyl and two perissodactyl families from this locality. We also provide insight into the evolution of the current Mediterranean climate system in this part of South Africa.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ayliffe, L. K., and Chivas, A. R. 1990. Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochimica et Cosmochimica Acta 54:26032609.CrossRefGoogle Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D., and Jaeger, J.-J. 1996. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11:306318.Google Scholar
Brink, J., and Lee-Thorp, J. 1992. The feeding niche of an extinct springbok, Antidorcas bondi (Alcelaphini, Bovidae), and its palaeoenvironmentaal meaning. South African Journal of Science 88:227229.Google Scholar
Bryant, J. D., Luz, B., and Froelich, P. N. 1994. Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107:303316.Google Scholar
Bryant, J. D., Froelich, P. N., Showers, W. J., and Genna, B. J. 1996. Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126:7589.Google Scholar
Cerling, T. E. 1992. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology 97:241247.CrossRefGoogle Scholar
Cerling, T. E. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344345.CrossRefGoogle Scholar
Cerling, T. E., and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.Google Scholar
Cerling, T. E., Harris, J. M., Ambrose, S. H., Leakey, M. G., and Solounias, N. 1997a. Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan, Kenya. Journal of Human Evolution 33:635650.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. 1997b. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:152157.CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., and Leakey, M. G. 1999. Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia 120:364374.Google Scholar
Chappell, J., and Shackleton, N. J. 1986. Oxygen isotopes and sea level. Nature 324:137140.Google Scholar
Coetzee, J. A., and Rogers, J. 1982. Palynological and lithological evidence for the Miocene palaeoenvironment in the Saldanha Region (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology 39:7185.CrossRefGoogle Scholar
Cowling, R. M., Richardson, D. M., and Mustart, P. J. 1997. Fynbos. Pp. 99130in Cowling, R. M., Richardson, D. M., and Pierce, S. M., eds. Vegetation in South Africa. Cambridge University Press, Cambridge.Google Scholar
Deacon, H. J., and Deacon, J. 1999. Human beginnings in South Africa: uncovering the secrets of the Stone Age. David Philip, Cape Town.Google Scholar
Ehleringer, J. R., Sage, R. F., Flanagan, L. B., and Pearcy, R. W. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecology and Evolution 6:9599.CrossRefGoogle Scholar
Ehleringer, J. R., Cerling, T. E., and Helliker, B. R. 1997. C4 photosynthesis, atmosphere CO2, and climate. Oecologia 112:285299.Google Scholar
Ellis, R. P., Vogel, J. C., and Fuls, A. 1980. Photosynthetic pathways and the geological distribution of grasses in South West Africa/Namibia. South African Journal of Science 76:307314.Google Scholar
Feranec, R. S., and MacFadden, B. J. 2000. Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 162:155169.Google Scholar
Harris, C., Oom, B. M., and Diamond, R. E. 1999. A preliminary investigation of the oxygen and hydrogen isotope hydrology of the greater Cape Town area and an assessment of the potential for using stable isotopes as tracers. Water SA (Pretoria) 25:1523.Google Scholar
Hendey, Q. B. 1976. The Pliocene fossil occurrences in ‘E’ quarry, Langebaanweg, South Africa. Annals of the South African Museum 69:215247.Google Scholar
Hendey, Q. B. 1980. Agriotherium (Mammalia, Ursidae) from Langebaanweg, South Africa, and relationships of the genus. Annals of the South African Museum 80:1109.Google Scholar
Hendey, Q. B. 1981. Geological succession at Langebaanweg, Cape Province, and global events of the late Tertiary. South African Journal of Science 77:3338.Google Scholar
Hendey, Q. B. 1983a. Palaeoenvironmental implications of the late Tertiary vertebrate fauna of the fynbos region. Pp. 100115in Deacon, H. J., Hendey, Q. B., and Lambrechts, J. J. N., eds. Fynbos palaeoecology: a preliminary synthesis. South African National Scientific Programmes Report 75. Cape Town.Google Scholar
Hendey, Q. B. 1983b. Palaeontology and palaeoecology of the Fynbos region: an introduction. Pp. 8799in Deacon, H. J., Hendey, Q. B., and Lambrechts, J. J. N., eds. Fynbos palaeoecology: a preliminary synthesis. South African National Scientific Programmes Report 75. Cape Town.Google Scholar
Hendey, Q. B. 1984. Southern African Late Tertiary vertebrates. Pp. 81106in Klein, R. G., ed. Southern African prehistory and paleoenvironments. Balkema, Boston.Google Scholar
Janis, C. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecological Systems 24:467500.Google Scholar
Kingdon, J. 1982. East African mammals: an atlas of evolution in Africa, Vol. II. Academic Press, London.Google Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26:573613.Google Scholar
Koch, P. L., Hesinger, J., Moss, C., Carlson, R. W., Fogel, M. L., and Behrensmeyer, A. K. 1995. Isotopic tracking of change in diet and habitat use in African elephants. Science 267:13401343.Google Scholar
Kohn, M. J., Schoeninger, M. J., and Valley, J. W. 1996. Herbivore tooth oxygen isotope composition: effects of diet and physiology. Geochimica et Cosmochimica Acta 60:38893896.Google Scholar
Lee-Thorp, J. A. 1989. Stable carbon isotopes in deep time: the diets of fossil fauna and hominids. Ph.D. thesis. University of Cape Town, Cape Town.Google Scholar
Lee-Thorp, J. A., and Thalma, A. S. 2000. Stable light isotopes and environments in the southern African Quaternary and Late Pliocene. Pp. 236251in Partridge, T. C. and Maud, R. R., eds. The Cenozoic of southern Africa. Oxford University Press, New York.Google Scholar
Lee-Thorp, J. A., and van der Merwe, N. J. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712715.Google Scholar
Lee-Thorp, J. A., and van der Merwe, N. J. 1991. Aspects of the chemistry of modern and fossil biological apatites. Journal of Archaeological Science 18:343354.Google Scholar
Lee-Thorp, J. A., Sealy, J. C., and van der Merwe, N. J. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite and their relationship to diet. Journal of Archaeological Science 16:585599.Google Scholar
Lee-Thorp, J. A., van der Merwe, N. J., and Brain, C. K. 1994. Diet of Australopithecus robustus at Swartkrans from stable carbon isotope analyses. Journal of Human Evolution 27:361372.Google Scholar
Lee-Thorp, J., Manning, L., and Sponheimer, M. 1997. Problems and prospects for carbon isotope analysis of very small samples of fossil tooth enamel. Bulletin de la Société Géologique de France 168:767773.Google Scholar
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48:385390.Google Scholar
MacFadden, B. J., and Cerling, T. E. 1994. Fossil horses, carbon isotopes and global change. Trends in Ecology and Evolution 9:481485.CrossRefGoogle ScholarPubMed
MacFadden, B. J., and Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10-million-year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16:103115.Google Scholar
MacFadden, B. J., and Shockey, B. J. 1997. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23:77100.Google Scholar
MacFadden, B. J., Cerling, T. E., and Prado, J. 1996. Cenozoic terrestrial ecosystems evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. Palaios 11:319327.Google Scholar
MacFadden, B. J., Solounias, N., and Cerling, T. E. 1999. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283:824827.CrossRefGoogle ScholarPubMed
Mercer, J. H. 1978. Glacial development and temperature trends in the Antarctic and in South America. Pp. 7393in Van Zinderen Bakker, E. M., ed. Antarctic glacial history and world palaeoenvironments. Balkema, Rotterdam.Google Scholar
Morgan, M. E., Kingston, J. D., and Marino, B. D. 1994. Carbon isotope evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature 367:162165.Google Scholar
Pagani, M., Freeman, K. H., and Arthur, M. A. 1999. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876879.CrossRefGoogle Scholar
Pough, F. H., Heiser, J. B., and McFarland, W. N. 1996. Vertebrate life. Prentice-Hall, Upper Saddle River, N.J.Google Scholar
Quade, J., Cerling, T. E., and Bowman, J. R. 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342:163166.Google Scholar
Quade, J., Cerling, T. E., Barry, J. C., Morgan, M. E., Pilbeam, D. R., Chivas, A. R., Lee-Thorp, J. A., and van der Merwe, N. J. 1992. A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chemical Geology 94:183192.Google Scholar
Quade, J., Ceding, T. E., Andrews, P., and Alpagut, B. 1995. Paleodietary reconstruction of Miocene faunas from Pasalar, Turkey using stable carbon and oxygen isotopes of fossil tooth enamel. Journal of Human Evolution 28:373384.Google Scholar
Scott, L. 1995. Pollen evidence for vegetational and climatic change in southern Africa during the Neogene and Quaternary. Pp. 6576in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Scott, L., Anderson, H. M., and Anderson, J. M. 1997. Vegetation history. Pp. 6290in Cowling, R. M., Richardson, D. M., and Pierce, S. M., eds. Vegetation of southern Africa. Cambridge University Press, Cambridge.Google Scholar
Siesser, W. G. 1980. Late Miocene origin of the Benguela Up-welling System off northern Namibia. Science 208:283285.CrossRefGoogle Scholar
Solounias, N., and Moelleken, M. C. 1993. Determination of dietary adaptation in an archaic antelope through tooth microwear and premaxillary analysis. Lethaia 26:261268.Google Scholar
Solounias, N., Teaford, M., and Walker, A. 1988. Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology 14:287300.Google Scholar
Solounias, N., McGraw, W. S., Hayek, L., and Werdelin, L. 2000. The paleodiet of Giraffidae. Pp. 8495in Vrba, E. S. and Schaller, G. B., eds. Antelopes, deer and relatives: fossil record, behavioral ecology, systematics, and conservation. Yale University Press, New Haven, Conn.Google Scholar
Sponheimer, M., and Lee-Thorp, J. A. 1999. Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 26:723728.Google Scholar
Sponheimer, M., and Lee-Thorp, J. A. 2001. The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126:153157.Google Scholar
Van der Merwe, N. J., Lee-Thorp, J. A., and Bell, R. H. 1988. Carbon isotopes as indicators of elephant diets and African environments. African Journal of Ecology 26:163172.Google Scholar
Vogel, J. C. 1978. Isotopic assessment of the dietary habits of ungulates. South African Journal of Science 74:298301.Google Scholar
Vogel, J. C., Fuls, A., and Ellis, R. P. 1978. The geographical distribution of Kranz grasses in southern Africa. South African Journal of Science 74:209214.Google Scholar
Yakir, D. 1992. Variantions in the natural abundances of oxygen-18 and deuterium in plant carbohydrates. Plant, cell and environment 15:10051020.CrossRefGoogle Scholar
Zazzo, A., Bocherens, H., Brunet, M., Beauvilain, A., Billiou, D., Mackaye, H. T., Vignaud, P., and Mariotti, A. 2000. Herbivore paleodiet and paleoenvironment changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology 26:294309.Google Scholar