Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T18:27:24.223Z Has data issue: false hasContentIssue false

Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space

Published online by Cambridge University Press:  08 February 2016

Mike Foote*
Affiliation:
Museum of Paleontology and Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1079

Abstract

It has been argued that many clades originating in the early Paleozoic filled their design space rapidly while still at low taxonomic diversity. Standardization of morphology for analytical purposes facilitates testing of this claim. Here I document evolutionary patterns of morphological disparity in Ordovician-Devonian crinoids, using a set of 75 discrete characters covering the principal features of the crinoid stem, cup, tegmen, and arms. Disparity is measured as the average dissimilarity among species, the range of morphospace occupied, and the number of realized character-state combinations. Comparison with generic richness reveals that the full range of form was essentially attained by the early part of the Caradocian, long before the time of maximal taxonomic diversity. Despite subsequent taxonomic diversification, the variety of crinoid form did not expand appreciably; increased diversity was accommodated by the evolution of variations upon the spectrum of designs established earlier. The data discussed here do not definitively imply specific sources of constraint, but the effective stasis in disparity supports previous arguments that some morphological limits were reached early in crinoid history.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anstey, R. L., and Pachut, J. F. 1992. Cladogenesis and speciation in early bryozoans. Geological Society of America Abstracts with Programs 24:A139.Google Scholar
Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology 54:273288.Google Scholar
Ausich, W. I. 1983. Functional morphology and feeding dynamics of the Early Mississippian crinoid Barycrinus asteriscus. Journal of Paleontology 57:3141.Google Scholar
Ausich, W. I. 1986. Paleoecology and history of the Calceocrinidae (Palaeozoic Crinoidea). Palaeontolgy 29:8599.Google Scholar
Ausich, W. I. 1988. Evolutionary convergence and parallelism in crinoid calyx design. Journal of Paleontology 62:906916.CrossRefGoogle Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Ausich, W. I., and Bottjer, D. J. 1985. Echinoderm role in the history of Phanerozoic tiering in suspension-feeding communities. Pp. 311in Keegan, B. F. and O'Connor, B. D. S., eds. Echinodermata, Proceedings of the Fifth International Echinoderm Conference, Galway. A. A. Balkema, Rotterdam.Google Scholar
Bambach, R. K., and Sepkoski, J. J. Jr. 1992. Historical evolutionary information in the traditional Linnean hierarchy. P. 16in Lidgard, S. and Crane, P. R., eds. Fifth North American Paleontological Convention abstracts and program (Paleontological Society Special Publication No. 6). The University of Tennessee, Knoxville, Tenn.Google Scholar
Barnes, C. R., Norford, B. S., and Skevington, D. 1981. The Ordovician System in Canada. International Union of Geological Sciences Publication 8:127.Google Scholar
Bassler, R. S., and Moodey, M. W. 1943. Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geological Society of America Special Paper 45:1734.CrossRefGoogle Scholar
Bather, F. A. 1900. The Crinoidea. Pp. 94204in Lankester, E. R., ed. A treatise on zoology, part III. Echinodermata. Adam and Charles Black, London.Google Scholar
Berry, W. B. N., and Boucot, A. J., eds. 1970. Correlation of the North American Silurian rocks. Geological Society of America Special Paper 102:1289.Google Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Breimer, A. 1969. A contribution to the paleoecology of Paleozoic stalked crinoids. Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen B 72:139150.Google Scholar
Breimer, A., and Lane, N. G. 1978. Ecology and paleoecology. Pp. T316T347in Moore, and Teichert, 1978.Google Scholar
Breimer, A., and Webster, G. D. 1975. A further contribution to the paleoecology of fossil stalked crinoids. Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen B 78:149167.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Broadhead, T. W. 1988a. The evolution of feeding structures in Palaeozoic crinoids. Pp. 257268in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
Broadhead, T. W. 1988b. Heterochrony—a pervasive influence in the evolution of Paleozoic Crinoidea. Pp. 115128in Burke, R. D., Mladenov, R. V., Lambert, P., and Parsley, R. L., eds. Echinoderm biology. Balkema, Rotterdam.Google Scholar
Brower, J. C. 1966. Functional morphology of Calceocrinidae with description of some new species. Journal of Paleontology 40:613634.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana 7:259499.Google Scholar
Brower, J. C. 1982. Phylogeny of primitive calceocrinids. Pp. 90110in Sprinkle, 1982.Google Scholar
Brower, J. C. 1988. Ontogeny and phylogeny in primitive calceocrinid crinoids. Journal of Paleontology 62:917934.CrossRefGoogle Scholar
Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Palaeozoic echinoderms. Pp. 61100in Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Carlson, S. J. 1992. Evolutionary trends in the articulate brachiopod hinge mechanism. Paleobiology 18:344366.CrossRefGoogle Scholar
Cherry, L. M., Case, S. M., Kunkel, J. G., Wyles, J. S., and Wilson, A. C. 1982. Body shape metrics and organismal evolution. Evolution 36:914933.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature (London) 361:219225.CrossRefGoogle Scholar
Cooper, G. A., Butts, C., Caster, K. E., Chadwick, G. H., Goldring, W., Kindle, E. M., Kirk, E., Merriam, C. W., Swartz, F. M., Warren, P. S., Warthin, A. S., and Willard, B. 1942. Correlation of the Devonian sedimentary formations of North America. Geological Society of America Bulletin 53:17291794.CrossRefGoogle Scholar
Derstler, K. L. 1981. Morphological diversity of early Cambrian echinoderms. Pp. 7175in Taylor, M. E., ed. Short papers for the second International Symposium on the Cambrian System. United States Geological Survey Open File Report 81-743.Google Scholar
Derstler, K. L. 1982. Estimating the rate of morphological change in fossil groups. Proceedings, Third North American Paleontological Convention 1:131136.Google Scholar
Donovan, S. K. 1986. Pelmatozoan columnals from the Ordovician of the British Isles, part 1. Palaeontographical Society Monograph 138(568):168.CrossRefGoogle Scholar
Donovan, S. K. 1988a. The early evolution of the Crinoidea. Pp. 235244in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
Donovan, S. K. 1988b. Functional morphology of synarthrial articulations in the crinoid stem. Lethaia 21:169175.CrossRefGoogle Scholar
Donovan, S. K. 1989a. Pelmatozoan columnals from the Ordovician of the British Isles, part 2. Palaeontographical Society Monograph 142(580):69120.CrossRefGoogle Scholar
Donovan, S. K. 1989b. The significance of the British Ordovician crinoid fauna. Modern Geology 13:243255.Google Scholar
Donovan, S. K. 1990. Functional morphology of synostosial articulations in the crinoid column. Lethaia 23:291296.CrossRefGoogle Scholar
Eckert, J. D. 1988. Late Ordovician extinction of North American and British crinoids. Lethaia 21:147167.CrossRefGoogle Scholar
Efron, B. 1982. The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia.CrossRefGoogle Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
Fisher, D. C. 1986. Progress in organismal design. Pp. 99117in Raup, and Jablonski, 1986.Google Scholar
Foote, M. 1991a. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1991b. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 28:101140.Google Scholar
Foote, M. 1992a. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.CrossRefGoogle Scholar
Foote, M. 1992b. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings, National Academy of Sciences, U.S.A. 89:73257329.CrossRefGoogle ScholarPubMed
Foote, M. 1993a. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Foote, M. 1993b. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.CrossRefGoogle Scholar
Foote, M. 1994. Morphology of Ordovician-Devonian crinoids. Contributions from the Museum of Paleontology, University of Michigan 29(in press).Google Scholar
Foote, M., and Gould, S. J. 1992. Cambrian and Recent morphological disparity. Science 258:1816.CrossRefGoogle ScholarPubMed
Gould, S. J. 1989. Wonderful life: the Burgess Shale and the nature of history. Norton, New York.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology 6:383396.CrossRefGoogle Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3:2340.CrossRefGoogle Scholar
Gould, S. J., Gilinsky, N. L., and German, R. Z. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236:14371441.CrossRefGoogle ScholarPubMed
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325338.CrossRefGoogle Scholar
Guensburg, T. E., and Sprinkle, J. 1990. Early Ordovician crinoid-dominated echinoderm fauna from the Fillmore Formation of western Utah. Geological Society of America Abstracts with Programs 22:A220.Google Scholar
Guensburg, T. E., and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology 20:407410.2.3.CO;2>CrossRefGoogle Scholar
Gumbel, E. J. 1958. Statistics of extremes. Columbia University Press, New York.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, New York.Google Scholar
Holland, C. H., and Bassett, M. G., eds. 1989. A global standard for the Silurian System. National Museum of Wales, Geological Series Number 9, Cardiff.Google Scholar
House, M. R. 1979. Devonian in the Eastern Hemisphere. Pp. A183A217in Robison, R. A. and Teichert, C., eds. Treatise on invertebrate paleontology, Part A, Introduction. The Geological Society of America and the University of Kansas, Boulder, Colo. and Lawrence, Kans.Google Scholar
Kammer, T. W., and Ausich, W. I. 1992. Advanced cladid crinoids from the middle Mississippian of the east-central United States: primitive-grade calyces. Journal of Paleontology 66:461480.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1993. Advanced cladid crinoids from the middle Mississippian of the east-central United States: intermediate-grade calyces. Journal of Paleontology 67:614639.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1994. Advanced cladid crinoids from the middle Mississippian of the east-central United States: advanced-grade calyces. Journal of Paleontology 68:339351.CrossRefGoogle Scholar
Kelly, S. M. 1982. Origin of the crinoid orders Disparida and Cladida: possible inadunate cup plate homologies. Proceedings, Third North American Paleontological Convention 1:285290.Google Scholar
Kendrick, D. C. 1992. Crinoid arm branching topology, pinnulation, and the convergence of crinoid arm designs. Geological Society of America Abstracts with Programs 24:A225.Google Scholar
Kendrick, D. C. 1993. Computer modelling of crinoid calyx morphologies and comparisons with real forms. Geological Society of America Abstracts with Programs 25:A103.Google Scholar
Lane, N. G. 1963a. Meristic variation in the dorsal cup of monobathrid camerate crinoids. Journal of Paleontology 37:917930.Google Scholar
Lane, N. G. 1963b. The Berkeley crinoid collection from Crawfordsville, Indiana. Journal of Paleontology 37:10011008.Google Scholar
Macurda, D. B. Jr. 1968. Ontogeny of the crinoid Eucalyptocrinites. Paleontological Society Memoir 2:99118.Google Scholar
Macurda, D. B. Jr. 1974. A quantitative phyletic study of the camerate crinoid families Actinocrinitidae and Periechocrinitidae and its taxonomic implications. Journal of Paleontology 48:820832.Google Scholar
Manten, A. A. 1971. Silurian reefs of Gotland. Elsevier, Amsterdam.Google Scholar
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L. 1985. Developmental constraints and evolution. Quarterly Review of Biology 60:265287.CrossRefGoogle Scholar
McShea, D. W. 1992. A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnaean Society 45:3955.CrossRefGoogle Scholar
Meyer, D. L. 1973. Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology 22:105129.CrossRefGoogle Scholar
Meyer, D. L. 1983. Food and feeding mechanisms: Crinozoa. Pp. 2542in Jangoux, M. and Lawrence, J. M., eds. Echinoderm nutrition. Balkema, Rotterdam.Google Scholar
Moore, R. C. 1952. Evolutionary rates among crinoids. Journal of Paleontology 26:338352.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper 46:1153.CrossRefGoogle Scholar
Moore, R. C., and Teichert, C., eds. 1978. Treatise on invertebrate paleontology, Part T, Echinodermata 2. The Geological society of America and the University of Kansas, Boulder, Colo. and Lawrence, Kans.Google Scholar
Moore, R. C., Rasmussen, H. W., Lane, N. G., Ubaghs, G., Strimple, H. L., Peck, R. E., Sprinkle, J., Fay, R. O., and Sieverts-Doreck, H. 1978. Systematic descriptions. Pp. T405T937in Moore, and Teichert, 1978.Google Scholar
Norris, A. W. 1979. Devonian in the Western Hemisphere. Pp. A218A253in Robison, R. A. and Teichert, C., eds. Treatise on invertebrate paleontology, Part A, Introduction. The Geological Society of America and the University of Kansas, Boulder, Colo. and Lawrence, Kans.Google Scholar
Paul, C. R. C. 1977. Evolution of primitive echinoderms. Pp. 123157in Hallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Paul, C. R. C. 1979. Early echinoderm radiation. Pp. 415434in House, M. R., ed. The origin of major invertebrate groups. Academic Press, London.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin, Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.CrossRefGoogle Scholar
Raup, D. M., and Jablonski, D., eds. 1986. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Rickard, L. V. 1981. Devonian biostratigraphy of New York. Pp. 522in Oliver, W. A. Jr., and Klapper, G., eds. Devonian biostratigraphy of New York. State University of New York, Binghamton.Google Scholar
Romer, A. S. 1949. Time series and trends in animal evolution. Pp. 103120in Jepsen, G. L., Mayr, E., and Simpson, G. G., eds. Genetics, paleontology, and evolution. Princeton University Press, N.J.Google Scholar
Ross, R. J., Jr., and 27 others. 1982. The Ordovician System in the United States. International Union of Geological Sciences Publication 12:173.Google Scholar
Ross, R. J. Jr., Ethington, R. L., and Mitchell, C. E. 1991. Stratotype of Ordovician Whiterock Series. Palaios 6:156173.CrossRefGoogle Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277295in Raup, and Jablonski, 1986.Google Scholar
Sepkoski, J. J. Jr. 1991. Population biology models in paleobiology. Pp. 136156in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. (Short courses in paleontology 4). The Paleontological Society, Knoxville, Tenn.Google Scholar
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine animal families, 2d ed. Milwaukee Public Museum Contributions in Biology and Geology 83:1156.Google Scholar
Sepkoski, J. J. Jr., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology 19:168184.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., and Raup, D. M. 1986. Periodicity in marine extinction events. Pp. 336in Elliot, D. K., ed. Dynamics of extinction. John Wiley and Sons, New York.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature (London) 293:435437.CrossRefGoogle Scholar
Siegel, S., and Castellan, N. J. Jr. 1988. Nonparametric statistics for the behavioral sciences, 2d ed.McGraw-Hill, New York.Google Scholar
Simms, M. J. 1990. Crinoids. Pp. 188204in McNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology 36:91109.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31:799828.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
Springer, F. 1911. On a Trenton echinoderm fauna at Kirkfield, Ontario. Canada Geological Survey Memoir 15-P:150.Google Scholar
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Institution Publication 2501:1486.Google Scholar
Springer, F. 1926. Unusual forms of fossil crinoids. Proceedings, United States National Museum 67:1137.CrossRefGoogle Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Special Publication, Museum of Comparative Zoology, Harvard University, Cambridge, Mass.CrossRefGoogle Scholar
Sprinkle, J. 1980. An overview of the fossil record. Pp. 1526in Broadhead, T. W. and Waters, J. A., eds. Echinoderms: notes for a short course. University of Tennessee, Knoxville.Google Scholar
Sprinkle, J., ed. 1982. Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph 1:1369.Google Scholar
Sprinkle, J., ed. 1983. Patterns and problems in echinoderm evolution. Echinoderm Studies 1:118.Google Scholar
Sprinkle, J., ed. 1990. New echinoderm fauna from the Ninemile Shale (Lower Ordovician) of central and southern Nevada. Geological Society of America Abstracts with Programs 22:A219.Google Scholar
Sprinkle, J., and Guensburg, T. E. 1991. Origin of echinoderms in the Paleozoic evolutionary fauna: new data from the Early Ordovician of Utah and Nevada. Geological Society of America Abstracts with Programs 23:A278.Google Scholar
Sprinkle, J., and Guensburg, T. E. 1992. Tiering history of suspension feeders on hard substrates. Geological Society of America Abstracts with Programs 24:A98.Google Scholar
Sprinkle, J., and Wahlman, G. P. 1994. New echinoderms from the Early Ordovician of west Texas. Journal of Paleontology 68:324338.CrossRefGoogle Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Thomas, R. D. K., and Reif, W.-E. 1993. The skeleton space: a finite set of organic designs. Evolution 47:341360.CrossRefGoogle ScholarPubMed
Thompson, D. W. 1942. On growth and form. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids. Pp. T58T216in Moore, and Teichert, 1978.Google Scholar
Ubaghs, G., Lane, N. G., Rasmussen, H. W., and Strimple, H. L. 1978. Evolution. Pp. T275T316in Moore, and Teichert, 1978.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1986. Fossil record of the origin of Baupläne and its implications. Pp. 209222in Raup, and Jablonski, 1986.Google Scholar
Valentine, J. W., and Erwin, D. H. 1987. Interpreting great developmental experiments: the fossil record. Pp. 71107in Raff, R. A. and Raff, E. C., eds. Development as an evolutionary process. Liss, New York.Google Scholar
Van Valen, L. 1974. Multivariate structural statistics in natural history. Journal of Theoretical Biology 45:235247.CrossRefGoogle ScholarPubMed
Wagner, P. J. 1993. Temporal patterns of morphologic disparity among early Paleozoic “archaeogastropods.” Geological Society of America Abstracts with Programs 25:A51.Google Scholar
Waters, J. A., Lane, N. G., Maples, C. G., and Hou, H.-F. 1991. New Late Devonian (Famennian) echinoderms from Xinjiang Province, Peoples Republic of China. Geological Society of America Abstracts with Programs 23:A279.Google Scholar
Webster, G. D. 1969. Bibliography and index of Paleozoic crinoids, 1942-1968. Geological Society of America Memoir 137:1341.Google Scholar
Webster, G. D. 1977. Bibliography and index of Paleozoic crinoids, 1969-1973. Geological Society of America Microform Publication 8:1235.Google Scholar
Webster, G. D. 1981. New crinoids from the Naco Formation (Middle Pennsylvanian) of Arizona and a revision of the family Cromyocrinidae. Journal of Paleontology 55:11761199.Google Scholar
Webster, G. D. 1986. Bibliography and index of Paleozoic crinoids, 1974-1980. Geological Society of America Microform Publication 16:1405.Google Scholar
Webster, G. D. 1988. Bibliography and index of Paleozoic crinoids and coronate echinoderms, 1981-1985. Geological Society of America Microform Publication 18:1235.Google Scholar
Webster, G. D. 1993. Bibliography and index of Paleozoic crinoids, 1986-1990. Geological Society of America Microform Publication 25:1204.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison between Cambrian and Recent arthropods. Paleobiology 20:93130.CrossRefGoogle Scholar