Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T13:15:36.145Z Has data issue: false hasContentIssue false

Microwear–mesowear congruence and mortality bias in rhinoceros mass-death assemblages

Published online by Cambridge University Press:  21 November 2017

Matthew C. Mihlbachler
Affiliation:
Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, New York 11568, and Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, U.S.A. E-mail: [email protected]
Daniel Campbell
Affiliation:
New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, New York 11568, U.S.A.
Charlotte Chen
Affiliation:
New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, New York 11568, U.S.A.
Michael Ayoub
Affiliation:
New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, New York 11568, U.S.A.
Pawandeep Kaur
Affiliation:
New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, New York 11568, U.S.A.

Abstract

Although we do not know the cause of death of most fossil animals, mortality is often associated with ecological stress due to seasonality and other stochastic events (droughts, storms, volcanism) that may have caused shifts in feeding ecology preceding death. In these instances, dental microwear, which reflects feeding ecology in a narrow window of time, may provide a biased view of diet. Mesowear, another dental-wear proxy based on the morphology of worn cusps, requires macroscopic amounts of dental wear and reflects diet for a longer interval and may be less prone to bias from near-death ecological stress. We compared congruence between microwear and mesowear of North American, fossil rhinocerotid mass-death assemblages and collections of hunted modern rhinocerotids to test the hypothesis that fossil assemblages yield more incongruous microwear and mesowear data as a result of near-death ecological disturbances. In extant rhinos, both mesowear and microwear are associated with diet and height of the feeding environment. Mesowear and microwear in the modern rhinocerotid collections are statistically correlated, with strong relationships between average mesowear scores and labially distributed dental microwear. In contrast, a relationship between mesowear and microwear was not observed among the fossil rhinocerotid assemblages. Mesowear suggests that the fossil rhinos had low-abrasion diets, suggesting that they fed from clean, possibly tall vegetation. Some, but not all, mass-death assemblages produce microwear data with excessive scratches and/or pits compared with expectations based on mesowear results, suggesting that dental microwear was altered shortly before death in some but not all of the fossil assemblages. The dental-wear proxies available to paleoecologists provide a mosaic of dietary evidence reflecting diet over long (mesowear) and more abbreviated (microwear) periods of time that, together, provide a richer understanding of feeding ecology and its relationship to environment, seasonal change, and other ecological disturbances.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amman, H. 1985. Contributions to the ecology and sociology of the Javan Rhinoceros. Ph.D. dissertation. Universität Basel, Basel.Google Scholar
Arsenault, R., and Owen-Smith, N.. 2008. Resource partitioning by grass height among grazing ungulates does not follow body size relation. Oikos 117:11111717.Google Scholar
Arsenault, R., and Owen-Smith, N.. 2011. Competition and coexistence among short-grass grazers in the Hluhluwe-Imfolozi Park, South Africa. Canadian Journal of Zoology 89:900907.Google Scholar
Baggallay, T., Owen-Smith, N., and Swaisgood, R. R.. 1995. Black rhinoceros browsing facilitates resource availability: implications for donor population management. Nineteenth Annual Meeting of the Society for Conservation Biology, Abstracts of papers, pp. 11–12.Google Scholar
Bhatta, R. 2011. Ecology and conservation of great one-horned rhino (Rhinoceros unicornis) in Pobitora Wildlife Sanctuary, Assam, India. Ph.D. dissertation. University of Gauhati, Guwahati, India.Google Scholar
Birkett, A. 2002. The impact of giraffe, rhino and elephant on the habitat of a black rhino sanctuary in Kenya. African Journal of Ecology 40:276282.Google Scholar
Boyde, A., and Fortelius, M.. 1986. Development, structure and function of rhinoceros enamel. Zoological Journal of the Linnean Society 87:181214.CrossRefGoogle Scholar
Brown, D. H., Lent, P. C., Trollope, W. S. W., and Palmer, A. R.. 2003. Browse selection of black rhinoceros (Diceros bicornis) in two vegetation types of the eastern Cape Province, South Africa, with particular reference to Euphorbiaceae. Pp. 509512. in N. Allsopp, A. R. Palmer, S. J. Milton, K. P. Kirkman, G. I. H. Kerley, C. R. Hurt, and C. J. Brown, eds. Proceedings of the Seventh International Rangelands Congress, 26 July–1 August, Durban, South Africa. Document Transformation Technologies, Johannesburg, South Africa.Google Scholar
Buk, K. G., and Knight, M. H.. 2010. Seasonal diet preferences of black rhinoceros in three arid South African National Parks. African Journal of Ecology 48:10641075.CrossRefGoogle Scholar
Cerdeno, E. 1998. Diversity and evolutionary trends of the Family Rhinocerotidae (Perissodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 141:1334.Google Scholar
Clementz, M. T., Holroyd, P. A., and Koch, P. L.. 2008. Identifying aquatic habits of herbivorous mammals through stable isotope analysis. Palaios 23:574585.CrossRefGoogle Scholar
Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., De Ruiter, D., Sealy, J., Grant, R., and Fourie, N.. 2007. Diets of savanna ungulates from stable carbon isotopes composition of faeces. Journal of Zoology 273:2129.Google Scholar
Damuth, J., and Janis, C. M.. 2014. A comparison of observed molar wear rates in extant herbivorous mammals. Annales Zoologici Fennici 51:188200.Google Scholar
Deka, R. J., Sarma, N. K., and Baruah, K. K.. 2003. Nutritional evaluation of the principal forages/feed consumed by Indian rhino (Rhinoceros unicornis) in Pobitora Wildlife Sanctuary and Assam State Zoo-Cum-Botanical Garden, Assam. Zoos’ Print. Journal 18:10431045.Google Scholar
DeMiguel, D., Fortelius, M., Azanza, B., and Morales, J.. 2008. Ancestral feeding state of ruminants reconsidered: earliest grazing adaptation claims a mixed condition for Cervidae. BMC Evolutionary Biology 8:13.Google Scholar
DeMiguel, D., Azanza, B., and Morales, J.. 2011. Paleoenvironments and paleoclimate of the middle Miocene of central Spain: a reconstruction from dental wear of ruminants. Palaeogeography, Palaeoclimatology, Palaeoecology 302:452463.Google Scholar
DeSantis, L. R. G., and Wallace, S. C.. 2008. Neogene forests from the Appalachians of Tennessee, USA: geochemical evidence from fossil mammal teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 266:5968.Google Scholar
Dinerstein, E. 1992. Effects of Rhinoceros unicornis on riverine forest structure in lowland Nepal. Ecology 73:701704.CrossRefGoogle Scholar
Dinerstein, E. 2003. The return of the unicorns: the natural history and conservation of the greater one-horned rhinoceros. Columbia University Press, New York.Google Scholar
Dinerstein, E., and Price, L.. 1991. Demography and habitat use by greater one-horned rhinoceros in Nepal. Journal of Wildlife Management 55:401411.CrossRefGoogle Scholar
Dinerstein, E., and Wemmer, C. M.. 1988. Fruits Rhinoceros eat: dispersal of Trewia nudiflora (Euphorbiaceae) in lowland Nepal. Ecology 69:17681774.Google Scholar
Dudley, C. O. 1997. The candelabra tree (Euphorbia ingens): a source of water for black rhinoceros in Liwonde National Park, Malawi. Koedoe 40:5762.Google Scholar
Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A., and C4 Grasses Consortium 2010. The origins of C4 grassland: integrating evolutionary and ecosystem science. Science 328:587591.Google Scholar
El-Zaatari, S. 2010. Occlusal microwear texture analysis and the diets of historical/prehistoric hunter-gatherers. International Journal of Osteoarchaeology 20:6787.Google Scholar
Emslie, R. H., and Adcock, K.. 1994. Feeding ecology of black rhinos. Pp. 65–81 in B. L. Penzhorn and N. P. J. Kriek, eds. Proceedings of a symposium on rhinos as game ranch animals, 9–10 September, Onderstepoort, South Africa.Google Scholar
Erickson, K. L. 2014. Prairie grass phytolith hardness and the evolution of ungulate hypsodonty. Historical Biology 26:737744.Google Scholar
Feranec, R. S., and MacFadden, B. J.. 2006. Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology 32:191205.CrossRefGoogle Scholar
Feranec, R. S., and Pagnac, D.. 2013. Stable carbon isotope evidence for the abundance of C4 plants in the middle Miocene of southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 388:4247.Google Scholar
Fjellstad, J. I., and Steinheim, G.. 1996. Diet and habitat use of greater Indian one-horned rhinoceros (Rhinoceros unicornis) and Asian elephant (Elephas maximus) during the dry season in Babai Valley, Royal Bardia National Park, Nepal. M.S. thesis, Agricultural University of Norway, Ås, Norway.Google Scholar
Fortelius, M., and Solounias, N.. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301:136.Google Scholar
Foster, J. B. 1967. The square-lipped rhino (Ceratotherium simum cotton) in Uganda. East African Wildlife Journal 5:167171.CrossRefGoogle Scholar
Franz-Odendaal, T. A., and Solounias, N.. 2004. Comparative dietary evaluations of an extinct giraffid (Sivatherium hendeyi) (Mammalia, Giraffidae, Sivatheriinae) from Langebaanweg, South Africa (early Pliocene). Geodiversitas 26:675685.Google Scholar
Fraser, D., and Theodor, J. M.. 2011. Comparing ungulate dietary proxies using discriminant function analysis. Journal of Morphology 272:15131526.Google Scholar
Fraser, D., and Theodor, J. M.. 2013. Ungulate diets reveal patterns of grassland evolution in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 369:409421.Google Scholar
Ganqa, N. M., Scogings, P. F., and Raats, J. G.. 2005. Diet selection and forage quality factors affecting woody plant selection by black rhinoceros in the Great Fish River Reserve, South Africa. South African Journal of Wildlife Research 35:7783.Google Scholar
Goddard, J. 1968. Food preferences of two black rhinoceros populations. East African Wildlife Journal 6:118.Google Scholar
Goddard, J. 1970. Food preferences of black rhinoceros in the Tsavo National Park. East African Wildlife Journal 8:14161.Google Scholar
Gogarten, J. F., and Grine, F. E.. 2013. Seasonal mortality patterns in primates: implications for interpretation of dental microwear. Evolutionary Anthropology 22:919.Google Scholar
Gogarten, J. F., Brown, L. M., Chapman, C. A., Cords, M., Doran-Sheehy, D., Fedigan, L. M., Grine, F. E., Perry, S., Pusey, A. E., Sterck, E. H. M., Wich, S. A., and Wright, P. C.. 2012. Seasonal mortality patterns in non-human primates: implications for variation in selection pressures across environments. Evolution 66:32523266.CrossRefGoogle ScholarPubMed
Groves, C. P. 1972. Ceratotherium simum . Mammalian Species 8:16.Google Scholar
Groves, C. P. 1982. Asian rhinoceroses: down but not out. Malayan Naturalist 36:1122.Google Scholar
Groves, C. P., and Kurt, F.. 1972. Dicerorhinus sumatrensis. Mammalian Species 21:16.Google Scholar
Groves, C. P., and Leslie, D. M. J.. 2011. Rhinoceros sondiacus (Perissodactyla: Rhinocerotidae). Mammalian Species 43:190208.CrossRefGoogle Scholar
Hager, S., Mihlbachler, M. C., and Beatty, B. L.. 2014. Indentation hardness of tooth enamel of multiple mammalian species and the role of enamel microstructure on dental wear mechanics. Journal of Vertebrate Paleontology, 74th Annual Meeting, Abstracts of Papers, p. 143.Google Scholar
Hall-Martin, A. J., Erasmus, T., and Botha, B. P.. 1982. Seasonal variation of diet and faeces composition of black rhinoceros Diceros bicornis in the Addo Elephant National Park. Koedoe 25:6382.Google Scholar
Harrison, J. A., and Manning, E. M.. 1983. Extreme carpal variability in Teleoceras (Rhinocerotidae, Mammalia). Journal of Vertebrate Paleontology 3:5864.Google Scholar
Hatcher, J. B. 1885. Information as to occurrence of bones in Kansas. Field records on file in the archives of the Department of Paleobiology. National Museum of Natural History, Washington, D.C.Google Scholar
Hazarika, B. C., and Saikia, P. K.. 2010. A study of the behaviour of great Indian one-horned rhino (Rhinoceros unicornis) in the Rajiv Gandhi Orang National Park, Assam, India. NeBIO 1(2):6274.Google Scholar
Heller, E. 1913. The white rhinoceros. Smithsonian Miscellaneous. Collections 61:177.Google Scholar
Hennig, J., and Gindrig, T.. 2002. Feeding habits of desert dwelling black rhinoceros (Diceros bicornis), in Kunene Region northwest of Namibia. Pp. 311–312 in H. M. Schwammer, T. J. Foose, M. Fouraker, and D. Olson, eds. Proceedings of the International Elephant and Rhino Research Symposium. Schuling, Muenster.Google Scholar
Hernesniemi, E., Blomstedt, K., and Fortelius, M.. 2011. Multi-view stereo three-dimensional reconstruction of lower molars of recent and Pleistocene rhinoceroses for mesowear analysis. Palaeontologia Electronica 14:palaeo-electronica.org/2011_2/246/index.html.Google Scholar
Hoffman, J. M., Fraser, D., and Clementz, M. T.. 2015. Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear. Journal of Experimental Biology 218:15381547.Google Scholar
Hoogerwerf, A. 1970. Udung Kulon: the land of the last Javan rhinoceros. Brill, Leiden, Netherlands.CrossRefGoogle Scholar
Hunt, R. M. 1990. Taphonomy and sedimentology of Arikaree (lower Miocene) fluvial, eolian, and lacustrine paleoenvironments, Nebraska and Wyoming; a paleobiota entombed in fine-grained volcaniclastic rocks. In M. G. Lockley, and A. Rice, eds. Volcanisms and fossil biotas. Geological Society of America Special Paper 244:69–111. Boulder, Colo.Google Scholar
Janis, C. M. 2008. An evolutionary history of browsing and grazing ungulates. Pp. 2145 in I. J. Gordon, and H. H. T. Prins, eds. The ecology of browsing and grazing. Springer, Berlin.Google Scholar
Jnawali, S. R. 1995. Population ecology of greater one-horned rhinoceros (Rhinoceros unicornis) with particular emphasis on habitat preference, food ecology and ranging behavior of a reintroduced population in Royal Bardia National Park in lowland Nepal. Ph.D. dissertation. Agricultural University of Norway, Ås, Norway.Google Scholar
Jnawali, S. R., and Wegge, P.. 1991. Space and habitat use by a small re-introduced population of greater one-horned rhinoceros (Rhinoceros unicornis) in Royal Bardia National Park in Nepal. A preliminary report. Pp. 208–227 in O. A. Ryder, ed. Rhinoceros biology and conservation. Zoological Society of San Diego, San Diego.Google Scholar
Joubert, E., and Eloff, F. C.. 1971. Notes on the ecology and behaviour of the black rhinoceros Diceros bicornis Linn. 1758 in South West Africa. Madoqua 1:553.Google Scholar
Kahlke, R.-D., and Kaiser, T. M.. 2011. Generalism as a subsistence strategy: advantages and limitations of the highly flexible traits of Pleistocene Staphanorhinus hundsheimensis (Rhinocerotidae, Mammalia). Quaternary Science Reviews 30:22502261.Google Scholar
Kaiser, T. M., Müller, D. W. H., Fortelius, M., Schulz, E., Codron, D., and Clauss, M.. 2011. Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Review 43:3446.Google Scholar
Kandel, R. C., and Jhala, Y. V.. 2008. Demographic structure, activity patterns, habitat use and food habits of Rhinoceros unicornis in Chitwan National Park, Nepal. Journal of Bombay Natural History Society 105:513.Google Scholar
King, T., Andrews, P., and Boz, B.. 1999. Effect of taphonomic processes on dental microwear. American Journal of Physical Anthropology 108:359373.Google Scholar
Kleynhans, E. J., Jolles, A. E., Bos, M. R. E., and Olff, H.. 2011. Resource partitioning along multiple niche dimension in differently sized African savanna grazers. Oikos 120:591600.Google Scholar
Koenigswald, W. v., Holbrook, L., and Rose, K. D.. 2011. Diversity and evolution of Hunter-Schreger band configuration in tooth enamel of perissodactyl mammals. Acta Palaeontologica Polonica 56:1132.Google Scholar
Kubo, M. O., and Yamada, E.. 2014. The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant sika deer populations. PLoS ONE 9:e90745.Google Scholar
Laurie, W. A. 1982. Behavioural ecology of the greater one-horned rhinoceros (Rhinoceros unicornis). Journal of Zoology 196:307341.Google Scholar
Laurie, W. A., Lang, E. M., and Groves, C. P.. 1983. Rhinoceros unicornis. Mammalian Species 211:16.Google Scholar
Leidy, J., and Lucas, F. A.. 1896. Fossil vertebrates from the Alachua Clays of Florida. Transactions of the Wagner Free Institute of Science of Philadelphia 4:761.Google Scholar
Lieverloo, R. J. v., Schuiling, B. F., Boer, W. F. d., Brown, D., and Prins, H. H. T.. 2009. A comparison of faecal analysis with backtracking to determine the diet compositions and species preference of the black rhinoceros (Diceros bicornis minor). European Journal of Wildlife Research 55:505515.Google Scholar
Loffredo, L. F., and DeSantis, L. R. G.. 2014. Cautionary lessons from assessing dental mesowear observer variability and integrating paleoecological proxies of an extreme generalist Cormohipparion emsliei . Palaeogeography, Palaeoclimatology, Palaeoecology 395:4252.Google Scholar
Loutit, B. D., Louw, G. N., and Seely, M. K.. 1987. First approximation of food preferences and the chemical composition of the diet of the desert-dwelling black rhinoceros, Diceros bicornis L. Madoqua 15:3554.Google Scholar
Louys, J., Meloro, C., Elton, S., Ditchfield, P., and Bishop, L.. 2011. Mesowear as a means of determining diets in African antelopes. Journal of Archaeological Science 38:14851495.Google Scholar
Louys, J., Ditchfield, P., Meloro, C., Elton, S., and Bishop, L.. 2012. Stable isotopes provide independent support for the use of mesowear variables for inferring diets in African antelopes. Proceedings of the Royal Society B 279:4441–4446.Google Scholar
Lucas, P. W., Omar, R., Al-Fadhalah, K., Almusallam, A. S., Henry, A. G., Michael, S., Thai, L. A., Watzke, J., Strait, D. S., and Atkins, A.. 2013. Mechanisms and causes of wear in tooth enamel: implications for hominin diets. Journal of the Royal Society Interface 10:19.Google Scholar
Lucas, P. W., van Casteren, A., and Al-Fadhalah, K.. 2014. The role of dust, grit, and phytoliths in tooth wear. Annales Zoologici Fennici 51:143152.Google Scholar
Luske, B. L., Mertens, T., Lent, P. C., de Boer, W. F., and Prins, H. H. T.. 2009. Impact of the black rhinoceros (Diceros bicornis minor) on a local population of Eurphorbia bothae in the Great Fish River Reserve, South Africa. African Journal of Ecology 47:509517.CrossRefGoogle Scholar
Lyman, R. L. 1994. Vertebrate taphonomy. Cambridge University Press, Cambridge.Google Scholar
MacFadden, B. J. 1998. Tale of two rhinos: isotopic ecology, paleodiet, and niche differentiation of Aphelops and Teleoceras from the Florida Neogene. Paleobiology 24:274286.CrossRefGoogle Scholar
MacFadden, B. J., and Cerling, T. E.. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16:103115.Google Scholar
Mainland, I. L. 1996. The lamb’s last supper: the role of dental microwear analysis in reconstructing livestock diet in the past. Environmental Archaeology 1:5562.Google Scholar
Makaure, J., and Caston, M.. 2013. Dry season browse preference for the black rhinoceros (Diceros bicornis): the case of the Midlands Black Rhino Conservancy (MBRC), Zimbabwe. Greener Journal of Biological Sciences 3:3147.Google Scholar
Mary, P. O., Solanki, G. S., Limboo, D., and Upadhaya, K.. 1998. Observations on feeding and territorial behaviour of Indian rhino (Rhinoceros unicornis) in Kaziranga National Park, Assam, India. Tiger Paper 25:2528.Google Scholar
McInerney, F. A., Strömberg, C. A. E., and White, W. C.. 2011. The Neogene transition from C3 to C4 grasslands in North America: stable carbon isotope ratios of fossil phytoliths. Paleobiology 37:2349.Google Scholar
Mead, A. J. 2000. Sexual dimorphism and paleoecology in Teleoceras , a North American Miocene rhinoceros. Paleobiology 26:689706.Google Scholar
Merceron, G., Blondel, C., Brunet, M., Sen, S., Solounias, N., Viriot, L., and Heintz, E.. 2004. The Late Miocene paleoenvironment of Afghanistan as inferred from dental microwear in artiodactyls. Palaeogeography, Palaeoclimatology, Palaeoecology 207:143163.Google Scholar
Merceron, G., Blondel, C., De Bonis, L., Koufos, G. D., and Viriot, L.. 2005. A new method of dental microwear analysis: application to extant primates and Ouranopithecus macedoniensis (late Miocene of Greece). Palaios 20:551561.CrossRefGoogle Scholar
Merceron, G., Escarguel, G., Angibault, J.-M., and Verheyden-Tixier, H.. 2010a. Can dental microwear textures record inter-individual dietary variations? PLoS ONE 5:e9542.CrossRefGoogle ScholarPubMed
Merceron, G., Kaiser, T. M., Kostopoulos, D. S., and Schulz, E.. 2010b. Ruminant diets and the Miocene extinction of European great apes. Proceedings of the Royal Society B 277:3105–3112.CrossRefGoogle Scholar
Mihlbachler, M. C. 2003. Demography of late Miocene rhinoceroses ( Teleoceras proterum and Aphelops malacorhinus) from Florida: linking mortality and sociality in fossil assemblages. Paleobiology 29:412428.2.0.CO;2>CrossRefGoogle Scholar
Mihlbachler, M. C. 2005. Linking sexual dimorphism and sociality in rhinoceroses: insights from Teleoceras proterum and Aphelops malacorhinus from the late Miocene of Florida. Bulletin of the Florida Museum of Natural History 45:495520.Google Scholar
Mihlbachler, M. C. 2007. Sexual dimorphism and mortality bias in a small Miocene North American Rhino, Menoceras arikarense: insights into the coevolution of sexual dimorphism and sociality in rhinos. Journal of Mammalian Evolution 14:217238.Google Scholar
Mihlbachler, M. C., and Beatty, B. L.. 2012. Magnification and resolution in dental microwear analysis using light microscopy. Palaeontologia Electronica 15:14.Google Scholar
Mihlbachler, M. C., Rivals, F., Solounias, N., and Semprebon, G. M.. 2011. Dietary change and evolution of horses in North America. Science 331:11781181.Google Scholar
Mihlbachler, M. C., Beatty, B. L., and Ayoub, M.. 2012a. Extraction and analysis of ingesta impacted in the dentitions of modern ungulates: new evidence for linking dental wear and feeding ecology. Journal of Vertebrate Paleontology, 72nd Annual Meeting, Abstracts of Papers, p. 141.Google Scholar
Mihlbachler, M. C., Beatty, B. L., Caldera-Siu, A., Chan, D., and Lee, R.. 2012b. Error rates in dental microwear analysis using light microscopy. Palaeontologia Electronica 15:22.Google Scholar
Mihlbachler, M. C., Campbell, D., Ayoub, M., Chen, C., and Ghani, I.. 2016. Comparative dental microwear of ruminant and perissodactyl molars: implications for paleodietary analysis of rare and extinct ungulate clades. Paleobiology 42:98116.Google Scholar
Mukinya, J. G. 1977. Feeding and drinking habits of the black rhinoceros in Masai Mara Game Reserve. East African Wildlife Journal 15:125138.Google Scholar
Muya, S. M., and Oguge, N. O.. 2000. Effects of browse availability and quality on black rhino (Diceros bicornis michaeli Groves 1967) diet in Nairobi National Park, Kenya. African Journal of Ecology 38:6271.Google Scholar
Oloo, T. W., Brett, R., and Young, T. P.. 1994. Seasonal variation in the feeding ecology of black rhinoceros (Diceros bicornis L.) in Laikipia, Kenya. African Journal of Ecology 32:142157.CrossRefGoogle Scholar
Osborn, H. F. 1898a. A complete skeleton of Teleoceras fossiger. Notes upon the growth and sexual characteristics of the species. Bulletin of the American Museum of Natural History 10:5159.Google Scholar
Osborn, H. F. 1898b. A complete skeleton of Teleoceras the true rhinoceros from the upper Miocene of Kansas. Science 7:554557.Google Scholar
Owen-Smith, R. N. 1975. The social ethology of the white rhinoceros Ceratotherium simum (Burchell 1817). Zeitschrift für Tierpsychologie 38:337384.Google Scholar
Owen-Smith, R. N. 1988. Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Pedersen, G. 2009. Habitat use and diet selection of reintroduced white rhinoceros (Ceratotherium simum) in Pafuri, Kruger National Park. M.S. thesis. Stellenbosch University, Stellenbosch, South Africa.Google Scholar
Perneger, T. 1998. What’s wrong with Bonferroni adjustments? British Medical Journal 316:12361238.Google Scholar
Pienaar, D. J. 1994. Habitat preference of the white rhino in Kruger National Park. Pp. 59–64 in B. L. Penzhorn and N. P. J. Kriek, eds. Proceedings of a symposium on rhinos as game ranch animals, 9–10 September, Onderstepoort, South Africa.Google Scholar
Player, I. C., and Feely, J. M.. 1960. A preliminary report on the square-lipped rhinoceros. Lammergeyer (Natal) 1:323.Google Scholar
Popowics, T. E., and Fortelius, M.. 1997. On the cutting edge: tooth blade sharpness in herbivorous and faunivorous mammals. Annales Zoologici Fennici 34:7388.Google Scholar
Pradham, N. M. B., Wegge, P., Moe, S. R., and Shrestha, A. K.. 2008. Feeding ecology of two endangered sympatric megaherbivores: Asian elephant Elephas maximus and greater one-horned rhinoceros Rhinoceros unicornis in lowland Nepal. Wildlife Biology 14:147154.Google Scholar
Pratiknyo, H. 1991. The diet of the Javan rhino. Voice of Nature. 93:1213.Google Scholar
Prothero, D. R. 1998. Rhinocerotidae. Pp. 595605 in C. M. Janis, K. M. Scott, and L. L. Jacobs, eds. Evolution of tertiary mammals of North America Vol. 1. Terrestrial carnivores, ungulates, and ungulatelike mammals Cambridge University Press, Cambridge.Google Scholar
Prothero, D. R. 2005. The evolution of the North American rhinoceros. Cambridge University Press, Cambridge.Google Scholar
Rabenold, D., and Pearson, A.. 2014. Scratching the surface: a critique of Lucas et al. (2013)’s conclusion that phytoliths do not abrade enamel. Journal of Human Evolution 74:130133.Google Scholar
Rensberger, J. M., and Koenigswald, W. v.. 1980. Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6:477495.Google Scholar
Rensberger, J. M., Forsten, A., and Fortelius, M.. 1984. Functional evolution of the cheek tooth pattern and chewing direction in Tertiary horses. Paleobiology 10:439452.Google Scholar
Ritchie, A. T. A. 1963. The black rhinoceros (Diceros bicornis L.). East African Wildlife Journal 1:5462.Google Scholar
Rivals, F., and Semprebon, G. M.. 2012. Paleoindian subsistence strategies and late Pleistocene paleoenvironments in the northeastern and southwestern United States: a tooth wear analysis. Journal of Archaeological Science 39:16081617.Google Scholar
Rivals, F., Solounias, N., and Mihlbachler, M. C.. 2007. Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison . Quaternary Research 68:338346.Google Scholar
Rivals, F., Schulz, E., and Kaiser, T. M.. 2008. Climate-related dietary diversity of the ungulate faunas from the middle Pleistocene succession (OIS 14–12) at the Caune de l’Argo (France). Paleobiology 34:117127.Google Scholar
Rivals, F., Schulz, E., and Kaiser, T. M.. 2009. A new application of dental wear analyses: estimation of duration of hominid occupations in archaeological localities. Journal of Human Evolution 56:329339.Google Scholar
Rivals, F., Mihlbachler, M. C., Solounias, N., Mol, D., Semprebon, G. M., and de Vos, J.. 2010. Palaeoecology of the mammoth steppe fauna from the late Pleistocene of the North Sea and Alaska: separating species preference from geographic influence in paleocological dental wear analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 286:4254.CrossRefGoogle Scholar
Rivals, F., Solounias, N., and Schaller, G. B.. 2011. Diet of Mongolian gazelles and Tibetan antelopes from steppe habitats using premaxillary shape, tooth mesowear and microwear analysis. Mammalian Biology 76:358364.Google Scholar
Rivals, F., Rindel, D., and Belardi, J. B.. 2013. Dietary ecology of extant guanaco (Lama guanicoe) from Southern Patagonia: seasonal leaf browsing and its archaeological implications. Journal of Archaeological Science 40:29712980.Google Scholar
Rivals, F., Takatsuki, S., Albert, R. M., and Maciá, L.. 2014. Bamboo feeding and tooth wear of three sika deer (Cervus nippon) populations from northern Japan. Journal of Mammalogy 95:10431053.Google Scholar
Rivals, F., Prignano, L., Semprebon, G. M., and Lozano, S.. 2015. A tool for determining duration of mortality events in archaeological assemblages using extant ungulate microwear. Scientific Reports 5:17330.Google Scholar
Rodríguez-Hidalgo, A., Rivals, F., Saladie, P., and Carbonell, E.. 2016. Season of bison mortality in TD10.2 bone bed at Gran Dolina site (Atapuerca): integrating tooth eruption. wear, and microwear methods. Journal of Archaeological Science: Reports 6:780789.Google Scholar
Rogers, R.R., Eberth, R., D. A., and Fiorillo, A. R.. 2007. Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago.Google Scholar
Rookmaaker, K. 2013. Ceratotherium simum: white rhinoceros (grass rhinoceros, square-lipped rhinoceros). Pp. 446454 in J. Kingdon, and H. M. Hoffmann, eds. Mammals of Africa Vol. 5. Carnivores, pangolins, equids and rhinoceroses. Bloomsbury, London.Google Scholar
Roosevelt, T., and Heller, E.. 1914. Life Histories of African game animals, Vol. 1. Scribner, New York.Google Scholar
Sánchez-Hernández, C., Rivals, F., Blasco, R., and Rosell, J.. 2016. Tale of two timescales: combining tooth wear methods with different temporal resolutions to detect seasonality of Palaeolithic hominin occupational patterns. Journal of Archaeological Science: Reports 6:790797.Google Scholar
Sanson, G. D., Kerr, S. A., and Gross, K. A.. 2007. Do silica phytoliths really wear mammalian teeth? Journal of Archaeological Science 34:526531.Google Scholar
Sarma, P. K., Mipun, B. S., Talukdar, B. K., Singha, H., Basumatary, A. K., Das, A. K., Sarkar, A., and Hazarika, B. C.. 2012. Assessment of habitat utilization pattern of rhinos (Rhinoceros unicornis) in Orang National Park, Assam, India. Pachyderm 51:3844.Google Scholar
Schenkel, R., and Schenkel-Hulliger, L.. 1969a. Ecology and behavior of the black rhinoceros. Parey, Hamburg.Google Scholar
Schenkel, R., and Schenkel-Hulliger, L.. 1969b. The Javan rhinoceros (Rh. sondaicus Desm.) in Udjung Kulon Nature reserve. Its ecology and behaviour. Acta Tropica 26:97135.Google Scholar
Schulz, E., Fahlke, J. M., Merceron, G., and Kaiser, T. M.. 2007. Feeding ecology of the Chalicotheriidae (Mammalia, Perissodactyla, Ancylopoda). Results from dental micro- and mesowear analyses. Verhandlungen des Naturwissenschaftlichen Vereins zu Hamburg 43:531.Google Scholar
Schulz, E., Piotrowski, V., Clauss, M., Mau, M., Merceron, G., and Kaiser, T. M.. 2013. Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits. PLoS ONE 8:e56167.Google Scholar
Semprebon, G. M., and Rivals, F.. 2007. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 253:3323347.Google Scholar
Semprebon, G. M., and Rivals, F.. 2010. Trends in the paleodietary habits of fossil camels from the Tertiary and Quaternary of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 295:131145.Google Scholar
Semprebon, G., Godfrey, L., Solounias, N., Sutherland, M. R., and Jungers, W. L.. 2004. Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution 47:115144.Google Scholar
Semprebon, G. M., Rivals, F., Solounias, N., and Hulbert, R. C. J.. 2016. Paleodietary reconstruction of fossil horses from Eocene through Pleistocene of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 442:110127.Google Scholar
Shrader, A. M., and Perrin, M. R.. 2006. Influence of density on the seasonal utilization of broad grassland types by white rhinoceroses. African Zoology 41:312315.Google Scholar
Shrader, A. M., Owen-Smith, N., and Ogutu, J. O.. 2006. How a mega-grazer copes with the dry season: food and nutrient intake rates by white rhinoceros in the wild. Functional Ecology 20:376384.Google Scholar
Solounias, N., and Semprebon, G.. 2002. Advances in reconstruction of ungulate ecomorphology with applications to early fossil equids. American Museum Novitates 3366:149.Google Scholar
Solounias, N., Fortelius, M., and Freeman, P.. 1994. Molar wear rates in ruminants: a new approach. Annales Zoologici Fennici 31:219227.Google Scholar
Steinheim, G., Wegge, P., Fjellstad, J. I., Jnawali, S. R., and Weladji, R. B.. 2005. Dry season diets and habitat use of sympatric Asian elephants (Elephas maximus) and greater one-horned rhinoceros (Rhinoceros unicornis) in Nepal. Journal of Zoology 265:377385.Google Scholar
Strickland, D. L. 1967. Ecology of the rhinoceros in Malaya. Malayan Nature. Journal 20:117.Google Scholar
Strömberg, C. A. E. 2005. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences USA 102:11980–11984.Google Scholar
Strömberg, C. A. E. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Science 39:517544.Google Scholar
Taylor, L. A., Kaiser, T. M., Schwitzer, C., Müller, D. W. H., Codron, D., Clauss, M., and Schulz, E.. 2013. Detecting inter-cusp and inter-tooth wear patterns in rhinocerotids. PLoS ONE 8:112.Google Scholar
Taylor, K. L., Beck, J. L., and Huzurbazar, S.V.. 2016. Factors influencing winter mortality risk for pronghorn exposed to wind energy development. Rangeland Ecology and Management 69:108116.Google Scholar
Tripathi, A. K. 2012. Habitat and population ecology of Rhinoceros unicornis in Dudhwa National Park, Uttar Pradesh. International Journal of Pharmacology and Life Sciences 3:20902097.Google Scholar
Tucker, S. T., Otto, R. E., Joeckel, R. M., and Voorhies, M. R.. 2014. The geology and paleontology of Ashfall Fossil Beds, a late Miocene (Clarendonian) mass-death assemblage, Antelope County and adjacent Knox County, Nebraska, USA. Geological Society of America Field Guide 36:120.Google Scholar
Tütken, T., Kaiser, T. M., Vennemann, T., and Merceron, G.. 2013. Opportunistic feeding strategy for the earliest Old World hypsodont equids: evidence from stable isotope and dental wear proxies. PLoS ONE 8:e74463.Google Scholar
Ungar, P. S. 2009. Teeth form and function: insights into adaptation through the analysis of dental microwear. Frontiers of Oral Biology 13:3843.Google Scholar
Ungar, P. S. 2015. Mammalian dental function and wear: a review. Biosurface and Biotribology 1:2541.Google Scholar
van Strien, N. J. 1986. The Sumatran rhinoceros Dicerorhinus sumatrensis (Fischer, 1814) in the Gunung Leuser National Park Sumatra, Indonesia. Parey, Hamburg.Google Scholar
Voorhies, M. R. 1985. A Miocene rhinoceros herd buried in volcanic ash. National Geographic Society Research Reports 19:671688.Google Scholar
Voorhies, M. R., and Thomasson, J. R.. 1979. Fossil grass anthoecia within Miocene rhinoceros skeletons: diet in an extinct species. Science 206:331333.Google Scholar
Waldram, M. S., Bond, W. J., and Stock, W. D.. 2008. Ecological engineering by a mega-grazer: white Rhino impacts on a South African savanna. Ecosystems 11:101112.Google Scholar
Webb, S. D., MacFadden, B. J., and Baskin, J. A.. 1981. Geology and paleontology of the Love Bone Bed from the late Miocene of Florida. American Journal of Science 281:513544.Google Scholar
Wegge, P., Shrestha, A. K., and Moe, S. R.. 2006. Dry season diets of sympatric ungulates in lowland Nepal: competition and facilitation in alluvial tall grasslands. Ecological Research 21:698706.Google Scholar
Wolf, D., Nelson, S. V., Schwartz, H. L., Semprebon, G. M., Kaiser, T. M., and Bernor, R. L.. 2010. Taxonomy and paleoecology of the Pleistocene Equidae from Makuyuni, Northern Tanzania. Palaeodiversity 3:249269.Google Scholar
Xia, J., Zheng, J., Huang, D., Tian, Z. R., Chen, L., Zhou, Z., and Ungar, P. S.. 2015. New model to explain tooth wear with implications for microwear formation and diet reconstruction. Proceedings of the National Academy of Sciences USA 112:10669–10672.Google Scholar
Young, T. P. 1994. Natural die-offs of large mammals: implications for conservation. Conservation Biology 8:410418.Google Scholar