Published online by Cambridge University Press: 08 February 2016
The kinetic model of taxonomic diversity predicts that the long-term diversification of taxa within any large and essentially closed ecological system should approximate a logistic process controlled by changes in origination and extinction rates with changing numbers of taxa. This model is tested with a new compilation of numbers of metazoan families known from Paleozoic stages (including stage-level subdivisions of the Cambrian). These data indicate the occurrence of two intervals of logistic diversification within the Paleozoic. The first interval, spanning the Vendian and Cambrian, includes an approximately exponential increase in families across the Precambrian-Cambrian Boundary and a “pseudo-equilibrium” through the Middle and Late Cambrian, caused by diversity-dependent decrease in origination rate and increase in extinction rate. The second interval begins with a rapid re-diversification in the Ordovician, which leads to a tripling of familial diversity during a span of 50 Myr; by the end of the Ordovician diversity attains a new dynamic equilibrium that is maintained, except for several extinction events, for nearly 200 Myr until near the end of the Paleozoic. A “two-phase” kinetic model is constructed to describe this heterogeneous pattern of early Phanerozoic diversification. The model adequately describes the “multiple equilibria,” the asymmetrical history of the “Cambrian fauna,” the extremely slow initial diversification of the later “Paleozoic fauna,” and the combined patterns of origination and extinction in both faunas. It is suggested that this entire pattern of diversification reflects the early success of ecologically generalized taxa and their later replacement by more specialized taxa.