Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T09:14:13.109Z Has data issue: false hasContentIssue false

Intraspecific variation in cephalopod conchs changes during ontogeny: perspectives from three-dimensional morphometry of Nautilus pompilius

Published online by Cambridge University Press:  24 January 2018

Amane Tajika
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland. E-mail: [email protected], [email protected]
Naoki Morimoto
Affiliation:
Laboratory of Physical Anthropology, Faculty of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502 Kyoto, Japan. E-mail: [email protected]
Ryoji Wani
Affiliation:
Faculty of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan. E-mail: [email protected]
Christian Klug
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland. E-mail: [email protected], [email protected]

Abstract

Intraspecific variation of organisms is of great importance to correctly carry out taxonomic work, which is a prerequisite for key disciplines in paleontology such as community paleoecology, biostratigraphy, and biogeography. However, intraspecific variation is rarely studied in ectocochleate cephalopods (ammonoids and nautiloids), for which an excessive number of taxa was established during the past centuries. Because intraspecific variation of fossilized organisms suffers from various biases (time averaging and taphonomy), an extant example is needed for actualistic comparison. We applied 3D morphometry to 93 specimens of Nautilus pompilius from three different geographic populations. This data set was used to examine the intraspecific variation throughout ontogeny in detail. Although there are slight differences between the populations as well as some measurement biases, a common pattern of intraspecific variation appears to be present. High variation in morphometric variables appears early in ontogeny and then decreases gradually in the following ontogenetic stages. Subsequently, the variation shows an increase again before maturity until a sharp increase or decrease occurs toward the end of ontogeny. Comparison with intraspecific variation of ammonoids and belemnites illustrated that some groups have ontogenetic patterns of intraspecific variation that are similar to that of N. pompilius. This implies that the abovementioned ontogenetic pattern of intraspecific variation might be common in some major cephalopod clades.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, J. M., Landman, N. H., and Mutvei, H.. 1987. Development of the embryonic shell of Nautilus . Pp. 373400. in W. B. Saunders, and N. H. Landman, eds. Nautilus: the biology and paleobiology of a living fossil. Springer, New York.CrossRefGoogle Scholar
Bert, D. 2014. Factors of intraspecific variability in ammonites, the example of Gassendiceras alpinum (d’Orbigny, 1850) (Hemihoplitidae, Upper Barremian). Annales de Paléontologie 100:217236.CrossRefGoogle Scholar
Bonnaud, L., Ozouf-Costaz, C., and Boucher-Rodoni, R.. 2004. A molecular and karyological approach to the taxonomy of Nautilus . Comptes Rendus Biologies 327:133138.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K.. 2015. Sustained Mesozoic–Cenozoic diversification of marine Metazoa: a consistent signal from the fossil record. Geology 43:979982.CrossRefGoogle Scholar
Courville, P., and Crônier, C.. 2005. Diversity or disparity in the Jurassic (Upper Callovian) genus Kosmoceras (Ammonitina): a morphometric approach. Journal of Paleontology 79:944953.CrossRefGoogle Scholar
Crick, R. E. 1978. Morphological variations in the ammonite Scaphites of the Blue Hill member, Carlile Shale, upper Cretaceous, Kansas. University of Kansas Paleontological Contributions, Paper 88.Google Scholar
Dagys, A., and Wetschat, W.. 1993. Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113121.Google Scholar
De Baets, K., Klug, C., and Monnet, C.. 2013. Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:7594.CrossRefGoogle Scholar
De Baets, K., Bert, D., Hoffmann, R., Monnet, C., Yacobucci, M. M., and Klug, C.. 2015. Ammonoid intraspecific variability. Pp. 359426. in C. Klug, D. Korn, K. De Baets, I. Kruta, and R. H. Mapes, eds. Ammonoid paleobiology: from anatomy to ecology. Springer, New York.CrossRefGoogle Scholar
Dzik, J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica 45:1319.Google Scholar
Dzik, J. 1985. Typologic versus population concepts of chronospecies: implications for ammonite biostratigraphy. Acta Palaeontologica Polonica 30:12.Google Scholar
Dzik, J. 1990. The concept of chronospecies in ammonites. Pp. 2530. in F. Cecca, S. Cresta, G. Pallini, and M. Santantonio, eds. Atti del Secondo Convegno Internazionale Fossili. Evoluzione, Ambiente, Pergola.Google Scholar
Haas, O. 1946. Intraspecific variation in, and ontogeny of, Prionotropis woollgari and Prionocyclus wyomingensis . Bulletin of the American Museum of Natural History 86:141224.Google Scholar
Hoffmann, R., Schultz, J. A., Schellhorn, R., Rybacki, E., Keupp, H., Gerden, S. R., Lemanis, R., and Zachow, S.. 2014. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research. Biogeosciences 11:27212739.CrossRefGoogle Scholar
Hohenegger, J., and Tatzreiter, F.. 1992. Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Triassic). Journal of Paleontology 66:801816.Google Scholar
House, M. 1981. Early ammonoids in space and time. In M. House, and J. Senior, eds. The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group. Systematics Association Special Volume 18:359367. Academic, London.Google Scholar
House, M. 1985. The ammonoid time-scale and ammonoid evolution. Geological Society of London Memoir 10:273283.CrossRefGoogle Scholar
House, M., and Kerr, W.. 1989. Ammonoid extinction events [and discussion]. Philosophical Transactions of the Royal Society of London B 325:307326.Google Scholar
Hughes, N. C., and Labandeira, C. C.. 1995. The stability of species in taxonomy. Paleobiology 21:401403.CrossRefGoogle Scholar
Jacobs, D. K., and Landman, N. H.. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26:101111.CrossRefGoogle Scholar
Jattiot, R., Bucher, H., Brayard, A., Monnet, C., Jenks, J. F., and Hautmann, M.. 2015. Revision of the genus Anasibirites Mojsisovics (Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction. Papers in Palaeontology 2:155158.Google Scholar
Kennedy, W. J. 1977. Ammonite evolution. Pp. 251304. in A. Hallam, ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Kennedy, W. J. 1989. Thoughts on the evolution and extinction of Cretaceous ammonites. Proceedings of the Geologists’ Association 100:251279.CrossRefGoogle Scholar
Kennedy, W. J., and Cobban, W.. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Paleontology 17:194.Google Scholar
Kennedy, W. J., and Wright, C.. 1985. Evolutionary patterns in Late Cretaceous ammonites. Special Papers in. Palaeontology 33:131143.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.2.0.CO;2>CrossRefGoogle Scholar
Klug, C. 2001. Life-cycle of Emsian and Eifelian ammonoids (Devonian). Lethaia 34:215233.Google Scholar
Klug, C. 2004. Mature modifications, the black band, the black aperture, the black stripe, and the periostracum in cephalopods from the Upper Muschelkalk (Middle Triassic, Germany). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 88:6378.Google Scholar
Klug, C., Korn, D., Landman, N. H., Tanabe, K., De Baets, K., and Naglik, C.. 2015a. Describing ammonoid conchs. Pp. 324. in C. Klug, D. Korn, K. De Baets, I. Kruta, and R. H. Mapes, eds. Ammonoid paleobiology: From anatomy to ecology. Topics in geobiology, 43. Springer, Dordrecht, Netherlands.Google Scholar
Klug, C., Zatoń, M., Parent, H., Hostettler, B., and Tajika, A.. 2015b. Mature modifications and sexual dimorphism. Pp. 261328. in C. Klug, D. Korn, K. De Baets, I. Kruta, and R. H. Mapes, eds. Ammonoid paleobiology: From anatomy to ecology. Topics in geobiology, 43. Springer, Dordrecht, Netherlands.Google Scholar
Korn, D. 2017. Goniatites sphaericus (Sowerby, 1814), the archetype of Palaeozoic ammonoids: a case of decreasing phenotypic variation through ontogeny. Paläontologische Zeitschrift 91:337352.Google Scholar
Korn, D., and Klug, C.. 2007. Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). Pp. 5785. in N. H. Landman, R. A. Davis, and R. H. Mapes, eds. Cephalopods present and past: new insights and fresh perspectives. Springer, Dordrecht, Netherlands.Google Scholar
Korn, D., Klug, C., and Walton, S. A.. 2015. Taxonomic diversity and morphological disparity of Paleozoic ammonoids. Pp. 431464. in C. Klug, D. Korn, K. De Baets, I. Kruta, and R. H. Mapes, eds. Ammonoid paleobiology: From macroevolution to paleogeography. Topics in geobiology, 44. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Monnet, C., Bucher, H., Wasmer, M., and Guex, J.. 2010. Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intra-specific variability. Palaeontology 53:961996.CrossRefGoogle Scholar
Naglik, C., Monnet, C., Goetz, S., Kolb, C., De Baets, K., Tajika, A., and Klug, C.. 2015. Growth trajectories of some major ammonoid sub-clades revealed by serial grinding tomography data. Lethaia 48:2946.CrossRefGoogle Scholar
Nardin, E., Rouget, I., and Neige, P.. 2005. Tendencies in paleontological practice when defining species, and consequences on biodiversity studies. Geology 33:969972.Google Scholar
Palframan, D. 1966. Variation and ontogeny of some Oxfordian ammonites: Taramelliceras richei (de Loriol) and Creniceras renggeri (Oppel), from Woodham, Buckinghamshire. Palaeontology 9:290311.Google Scholar
Saunders, W. B. 1987. The species of Nautilus . Pp. 3552. in W. B. Saunders, and N. H. Landman, eds. Nautilus: the biology and paleobiology of a living fossil. Springer, New York.CrossRefGoogle Scholar
Saunders, W. B., and Spinosa, C.. 1978. Sexual dimorphism in Nautilus from Palau. Paleobiology 4:349358.Google Scholar
Sepkoski, J. J., Bambach, R. K., Raup, D. M., and Valentine, J. W.. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Sinclair, B., Briskey, L., Aspden, W., and Pegg, G.. 2007. Genetic diversity of isolated populations of Nautilus pompilius (Mollusca, Cephalopoda) in the Great Barrier Reef and Coral Sea. Reviews in Fish Biology and Fisheries 17:223235.CrossRefGoogle Scholar
Stevens, S. S. 1946. On the theory of scales of measurement. Science 103:677680.CrossRefGoogle ScholarPubMed
Swan, A. R., and Saunders, W. B.. 1987. Morphological variation in Nautilus from Papua New Guinea. Pp. 85103. in W. B. Saunders, and N. H. Landman, eds. Nautilus. Plenum, New York.CrossRefGoogle Scholar
Tajika, A., Morimoto, N., Wani, R., Naglik, C., and Klug, C.. 2015. Intraspecific variation of phragmocone chamber volumes throughout ontogeny in the modern nautilid Nautilus and the Jurassic ammonite Normannites . PeerJ 3:e1306.CrossRefGoogle ScholarPubMed
Tajika, A., Kürsteiner, P., Pictet, A., Lehmann, J., Tschanz, K., Jattiot, R., and Klug, C.. 2017. Cephalopod associations and palaeoecology of the Cretaceous (Barremian–Cenomanian) succession of the Alpstein, northeastern Switzerland. Cretaceous Research 70:1554.CrossRefGoogle Scholar
Tanabe, K., and Shigeta, Y.. 1987. Ontogenetic shell variation and streamlining of some Cretaceous ammonites. Transactions and Proceedings of the Paleontological Society of Japan, new series 1987:165179.Google Scholar
Tanabe, K., and Tsukahara, J.. 1995. Morphological analysis of living Nautilus from Palau. Kagoshima University Research Center for the South Pacific, Occasional Papers 27:41–55.Google Scholar
Tanabe, K., Hayasaka, S., Saisho, T., Shinomiya, A., and Aoki, K.. 1983. Morphologic variation of Nautilus pompilius from the Philippines and Fiji islands. Kagoshima University Research Center for the South Pacific, Occasional Papers 1:9–21.Google Scholar
Tanabe, K., Hayasaka, S., and Tsukahara, J.. 1985. Morphological analysis of Nautilus pompilius. Kagoshima University Research Center for the South Pacific, Occasional Papers 4:38–49.Google Scholar
Tanabe, K., Tsukahara, J., and Hayasaka, S.. 1990. Comparative morphology of living Nautilus (Cephalopoda) from the Philippines, Fiji and Palau. Malacologia 31:297312.Google Scholar
Vandepas, L. E., Dooley, F. D., Barord, G. J., Swalla, B. J., and Ward, P. D.. 2016. A revisited phylogeography of Nautilus pompilius . Ecology and Evolution 6:49244935.Google Scholar
Wani, R., and Ayyasami, K.. 2009. Ontogenetic change and intra-specific variation of shell morphology in the Cretaceous nautiloid (Cephalopoda, Mollusca) Eutrephoceras clementinum (d’Orbigny, 1840) from the Ariyalur area, southern India. Journal of Paleontology 83:365378.CrossRefGoogle Scholar
Wani, R., Tajika, A., Ikuno, K., and Iwasaki, T.. 2018. Ontogenetic trajectories of septal spacing in early Jurassic belemnites from Germany and France, and their Paleobiological implications. Palaeontology 61:7788.Google Scholar
Ward, P. D. 1987. The natural history of. Nautilus . Allen and Unwin, Boston.Google Scholar
Westermann, G. E. G. 1996. Ammonoid life and habitat. Pp. 607707. in N. H. Landman, K. Tanabe, and R. A. Davis, eds. Ammonoid paleobiology. Plenum, New York.Google Scholar
Wray, C. G., Landman, N. H., Saunders, W. B., and Bonacum, J.. 1995. Genetic divergence and geographic diversification in Nautilus . Paleobiology 21:220228.CrossRefGoogle Scholar