Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T12:04:49.677Z Has data issue: false hasContentIssue false

Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate

Published online by Cambridge University Press:  08 February 2016

Antoine Zazzo
Affiliation:
Laboratoire de Biogéochimie Isotopique, Université P. et M. Curie INRA-CNRS UMR 7618, Case courrier 120, 4 place Jussieu, F-75252 Paris Cedex 05, France. E-mail: [email protected]
Hervé Bocherens
Affiliation:
Laboratoire de Biogéochimie Isotopique, Université P. et M. Curie INRA-CNRS UMR 7618, Case courrier 120, 4 place Jussieu, F-75252 Paris Cedex 05, France. E-mail: [email protected]
Daniel Billiou
Affiliation:
Laboratoire de Biogéochimie Isotopique, Université P. et M. Curie INRA-CNRS UMR 7618, Case courrier 120, 4 place Jussieu, F-75252 Paris Cedex 05, France. E-mail: [email protected]
André Mariotti
Affiliation:
Laboratoire de Biogéochimie Isotopique, Université P. et M. Curie INRA-CNRS UMR 7618, Case courrier 120, 4 place Jussieu, F-75252 Paris Cedex 05, France. E-mail: [email protected]
Michel Brunet
Affiliation:
Laboratoire de Géobiologie, Biochronologie et Paléontologie humaine, CNRS EP 1596, Université Poitiers, 40 an Recteur Pineau, F-86022, Poitiers Cedex, France
Patrick Vignaud
Affiliation:
Laboratoire de Géobiologie, Biochronologie et Paléontologie humaine, CNRS EP 1596, Université Poitiers, 40 an Recteur Pineau, F-86022, Poitiers Cedex, France
Alain Beauvilain
Affiliation:
Centre national d'Appui à la Recherche (CNAR), BP1228, N'Djaména, Chad
Hassane Taisso Mackaye
Affiliation:
Université de N'Djaména, BP1117, N'Djaména, Chad

Abstract

Chad is a key region for understanding early hominid geographic expansion in relation to late Miocene and Pliocene environmental changes, owing to its location 2500 km west from the Rift Valley and to the occurrence of sites ranging in age from about 6 to 3 Ma, some of which yield fossil hominids. To reconstruct changes in herbivore paleodiet and therefore changes in the paleoenvironment, we measured the carbon and oxygen isotope composition of 80 tooth-enamel samples from three time horizons for nine families of Perissodactyla, Proboscidea, and Artiodactyla. The absence of significant alteration of in vivo isotopic signatures can be determined for carbon, thus allowing paleodietary and paleoenvironmental interpretations to be made.

While the results generally confirm previous dietary hypotheses, mostly based on relative crown height, there are some notable surprises. The main discrepancies are found among low-crowned proboscideans (e.g., Anancus) and high-crowned rhinocerotids (Ceratotherium). Both species were more opportunistic feeders than it is usually believed. This result confirms that ancient feeding ecology cannot always be inferred from dental morphology or extant relatives.

There is an increase in the average carbon isotope composition of tooth enamel from the oldest unit to the youngest, suggesting that the environment became richer in C4 plants with time. In turn, more C4 plants indicate an opening of the plant cover during this period. This increase in carbon isotope composition is also recorded within genera such as Nyanzachoerus, Ceratotherium, and Hexaprotodon, indicating a change from a C3-dominated to a C4-dominated diet over time. It appears that, unlike other middle Pliocene hominid sites in eastern and southern Africa, this part of Chad was characterized by very open conditions and that savanna-like grasslands were already dominant when hominids were present in the area.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alemseged, Z. 1998. L'hominidé Omo-323: sa position phylétique et son environnement dans le cadre des communautés de mammifères du Plio-Pléistocène dans la basse vallée de l'Omo (Ethiopie). . Muséum National d'Histoire Naturelle, Paris.Google Scholar
Bariac, T., Gonzales-Dunia, J., Tardieu, F., Tessier, D., and Mariotti, A. 1994. Variabilité spatiale de la composition isotopique de l'eau (18O, 2H) au sein des organes des plantes aériennes: 1. Approche en conditions contrôlées. Chemical Geology (Isotope Geoscience Section) 115:307315.Google Scholar
Bernor, R. L., Tobien, H., and Woodburne, M. O. 1989. Patterns of Old World hipparionine evolutionary diversification. Pp. 263319in Linsay, E., Fahlbusch, V., and Mein, P., eds. European Neogene mammal chronology. NATO Advanced Research Workshop, Schloss Reisenberg, Germany. Plenum, New York.Google Scholar
Bocherens, H., Fizet, M., Mariotti, A., Billiou, D., Bellon, G., Borel, J. P., and Simone, S. 1991. Biogéochimie isotopique (13C, 18O, 15N) et paléoécologie des ours Pléistocènes de la grotte d'Aldène. Bulletin du Musée d'Anthropologie Préhistorique de Monaco 20:481492.Google Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D., and Jaeger, J. J. 1996. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11:306318.CrossRefGoogle Scholar
Boutton, T. W. 1991. Stable carbon isotope ratios of natural materials. II. Atmospheric, terrestrial, marine, and freshwater environments. Pp. 173195in Coleman, D. C. and Fry, B., eds. Carbon isotope techniques. Academic Press, San Diego.CrossRefGoogle Scholar
Brunet, M. 1998. Chadian australopithecines: biochronology and environmental context. Acts of the Dual Congress, Johannesburg-Pretoria, South Africa.Google Scholar
Brunet, M., Beauvilain, A., Coppens, Y., Heintz, E., Moutaye, A.H.E., and Pilbeam, D. 1995. The first australopithecine 2500 kilometres west of the Rift Valley (Chad). Nature 378:273275.CrossRefGoogle Scholar
Brunet, M. 1996. Australopithecus bahrelghazali, une nouvelle espèce d'Hominidé ancien de la région de Koro Toro (Tchad). Comptes Rendus de l'Académie des Sciences de Paris 322:907913.Google Scholar
Brunet, M., Beauvilain, A., Geraads, D., Guy, F., Kasser, M., Mackaye, H. T., MacLatchy, L., Mouchelin, G., Sudre, J., and Vignaud, P. 1997. Tchad: un nouveau site à Hominidés Pliocène. Comptes Rendus de l'Académie des Sciences de Paris 324:341345.Google Scholar
Brunet, M. 1998. Tchad: découverte d'une faune de mammifères du Pliocène inférieur. Comptes Rendus de l'Académie des Sciences de Paris 326:153158.Google Scholar
Brunet, M., and MPFT. 2000. Chad: discovery of a vertebrate fauna close to the Mio-Pliocene boundary. Journal of Vertebrate Paleontology (in press).CrossRefGoogle Scholar
Bryant, J. D., and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59:45234537.CrossRefGoogle Scholar
Cerling, T. E. 1992. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology 97:241247.CrossRefGoogle Scholar
Cerling, T. E., Wang, Y., and Quade, J. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344345.CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153158.CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., and Leakey, M. G. 1999. Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. Oecologia 120:364374.CrossRefGoogle ScholarPubMed
Clarke, R. J. 1998. First ever discovery of a well-preserved skull and associated skeleton of Australopithecus. South African Journal of Science 94:460463.Google Scholar
Coppens, Y. 1965. L'Hominien du Tchad. Comptes Rendus de l'Académie des Sciences de Paris 260:28692871.Google Scholar
Dansgaard, W. 1964. Stables isotopes in precipitation. Tellus 16:435468.Google Scholar
Ehleringer, J. R. 1989. Carbon isotope ratios and physiological processes in aridland plants. Pp. 4154in Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., eds. Stable isotopes in ecological research. Springer, New York.CrossRefGoogle Scholar
Ehleringer, J. R., Cerling, T. E., and Helliker, B. R. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285299.CrossRefGoogle ScholarPubMed
Eisenmann, V. 1998. Folivores et tondeurs d'herbe: forme de la symphyse mandibulaire des équidés et des tapiridés (Perissodactyla, Mammalia). Geobios 31:113123.CrossRefGoogle Scholar
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotopic discrimination and photosynthesis. Annual Reviews of Plant Physiology and Plant Molecular Biology 40:503537.CrossRefGoogle Scholar
Fricke, H. C., Clyde, W. C., and O'Neil, J. R. 1998. Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62:18391850.CrossRefGoogle Scholar
Gauthier-Pilters, H., and Dagg, A. I. 1981. The camel, its evolution, ecology, behavior, and relationship to man. University of Chicago Press, Chicago.Google Scholar
Gèze, R. 1985. Répartition paléoécologique et relations phylogénétiques des Hippopotamidae (Mammalia, Artiodactyla) du Néogène d'Afrique orientale. Pp. 81100in L'environnement des Hominidés au Plio-Pléistocène. Masson, Paris.Google Scholar
Grine, F. E., and Kay, R. F. 1988. Early hominids diet from quantitative image analysis of dental microwear. Nature 333:765768.CrossRefGoogle ScholarPubMed
Guérin, C. 1994. Les rhinocéros (Mammalia, Perissodactyla) du Néogène de l'Ouganda. Pp. 263279in Senut, B. and Pickford, M., eds. Geology and paleobiology of the Albertine Rift Valley, Uganda-Zaïre, Vol. II. Paleobiology. CIFEG Occasional Publications, Orléans.Google Scholar
Harris, J. M., and White, T. D. 1979. Evolution of the Plio-Pleistocene African Suidae. Transactions of the American Philosophical Society 69:1128.CrossRefGoogle Scholar
Hayek, L. C., Bernor, R. L., Solounias, N., and Steigerwald, P. 1992. Preliminary studies of hipparionine horse diet as measured by tooth microwear. Annales Zoologici Fennici 28:187200.Google Scholar
Janis, C. M. 1990. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets in extinct species. Pp. 241259in Boucout, A. J., ed. Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam.Google Scholar
Kingdon, J. 1979. East African mammals, Vol. III(B). Academic Press, London.Google Scholar
Kingston, J. D., Marino, B., and Hill, A. 1994. Isotopic evidence for Neogene hominid paleoenvironment in the Kenya Rift Valley. Science 264:955959.CrossRefGoogle ScholarPubMed
Koch, P. L., Fisher, T. C., and Dettman, D. L. 1989. Oxygen isotope variation in the tusk of extinct proboscideans: a measure of season of death and seasonality. Geology 17:515519.2.3.CO;2>CrossRefGoogle Scholar
Koch, P. L., Hoppe, K. A., and Webb, S. D. 1998. The isotopic ecology of late Pleistocene mammals in North America, Part 1. Florida. Chemical Geology (Isotope Geoscience Section) 152:119138.Google Scholar
Kohn, M. J. 1996. Predicting animal d18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.CrossRefGoogle Scholar
Kohn, M. J., Schoeninger, M. J., and Valley, J. W. 1996. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta 60:38893896.CrossRefGoogle Scholar
Leakey, M. G., Feibel, C. S., Bernor, R. L., Harris, J. M., Cerling, T. E., Stewart, K. M., Storrs, G. W., Walker, A., Werdelin, L., and Winckler, A. J. 1998. Lothagam: a record of faunal change in the late Miocene of East Africa. Journal of Vertebrate Paleontology 16:556570.CrossRefGoogle Scholar
Lee-Thorp, J. A., van der Merwe, N. J., and Brain, C. K. 1994. Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution 27:361372.CrossRefGoogle Scholar
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleohydrological research? Geochimica et Cosmochimica Acta 48:385390.CrossRefGoogle Scholar
Luz, B., Kolodny, Y., and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48:16891693.CrossRefGoogle Scholar
MacFadden, B. J. 1984. Systematics and phylogeny of Hipparion, Neohipparion, Nannippus and Cormohipparion (Mammalia, Equidae) from the Miocene and Pliocene of the New World. Bulletin of the American Museum of Natural History 179:1196.Google Scholar
MacFadden, B. J., and Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16:103115.CrossRefGoogle Scholar
MacFadden, B. J., Solounias, N., and Cerling, T. E. 1999. Ancient diets, ecology and extinction of 5-million-year-old horses from Florida. Science 283:824827.CrossRefGoogle ScholarPubMed
Morgan, M. E., Kingston, J. D., and Marino, B. D. 1994. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature 367:162165.CrossRefGoogle Scholar
Pickford, M., Morales, J., and Soria, D. 1995. Fossil camels from the upper Miocene of Europe: implications for biogeography and faunal change. Geobios 28:641650.CrossRefGoogle Scholar
Schultze, E. D., Ellis, R., Schultze, W., Trimborn, P., and Ziegler, H. 1996. Diversity, metabolic types and δ13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia 106:352369.CrossRefGoogle Scholar
Sharp, Z. D., and Cerling, T. E. 1998. Fossil isotope records of seasonal climate and ecology: straight from the horse's mouth. Geology 26:219222.2.3.CO;2>CrossRefGoogle Scholar
Sillen, A. 1988. Elemental and isotopic analyses of mammalian fauna from southern Africa and their implications for paleodietary research. American Journal of Physical Anthropology 76:4960.CrossRefGoogle Scholar
Sillen, A., and Lee-Thorp, J. A. 1994. Trace element and isotopic aspects of predator-prey relationships in terrestrial foodwebs. Palaeogeography, Palaeoclimatology, Palaeoecology 107:243255.CrossRefGoogle Scholar
Simpson, G. G. 1951. Horses: the story of the horse family in the modern world and through sixty million years of history. Oxford University Press, New York.Google Scholar
Sponheimer, M., and Lee-Thorp, J. A. 1999. Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science 283:368370.CrossRefGoogle ScholarPubMed
Sternberg, L.S.L. 1989. Oxygen and hydrogen isotope ratios in plant cellulose: mechanisms and applications. Pp. 124141in Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., eds. Stable isotopes in ecological research. Springer, New York.CrossRefGoogle Scholar
Sternberg, L. S. L., DeNiro, M. J., and Johnson, H. B. 1986. Oxygen and hydrogen isotope ratios of water from photosynthetic tissues of CAM and C3 plants. Plant Physiology 82:428431.CrossRefGoogle Scholar
Tassy, P. 1994. Les Proboscidiens (Mammalia) fossiles du rift occidental, Ouganda. Pp. 217257in Senut, B. and Pickford, M., eds. Geology and Paleobiology of the Albertine Rift Valley, Uganda-Zaïre, Vol. II. Palaeobiology. CIFEG Occasional Publications, Orléans.Google Scholar
van der Merwe, N. J., and Medina, E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archeological Science 18:249259.CrossRefGoogle Scholar
Vercammen, P., Seydack, A. H. W., and Oliver, W. L. R. 1993. The bush pigs (Potamochoerus porcus and P. larvatus). Pp. 93101in Oliver, W. L. R., ed. Pigs, pecaries and hippos. IUCN, Gland, Switzerland.Google Scholar
Vrba, E. S. 1985. Ancestors: the hard evidence. A. R. Liss, New York.Google Scholar
Wang, Y., and Cerling, T. E. 1994. A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 107:281289.CrossRefGoogle Scholar
Wang, Y., Cerling, T. E., and MacFadden, B. J. 1994. Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 107:269279.CrossRefGoogle Scholar