Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T06:26:25.382Z Has data issue: false hasContentIssue false

Heart urchins at the Cretaceous/Tertiary boundary: a tale of two clades

Published online by Cambridge University Press:  08 February 2016

Charlotte H. Jeffery*
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

Abstract

Previous estimates of the global generic diversity loss for echinoids at the Cretaceous/Tertiary boundary have been as high as 65%. However, these estimates are based on compilations of occurrence data from the existing literature and are plagued by problems of inconsistent taxonomic usage. Analysis of a taxonomically standardized, phylogenetically framed data set demonstrates that the generic extinction rate for heart urchins was 33%, and that the two constituent orders suffered markedly different fates. Whereas holasteroids lost 56% of their generic diversity at the end of the Cretaceous, only 17% of spatangoid genera became extinct. Correlation of extinction with a range of geographical, environmental, and biological factors has been explored. Survivorship is significantly correlated only with feeding strategy, implying that the extinctions of atelostomate echinoids at the Cretaceous/Tertiary boundary were nutrient driven. In addition, feeding strategy is correlated with atelostomate clade affinity, explaining the differential fates of holasteroids and spatangoids at the end of the Cretaceous.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arthur, M. A., Zachos, J. C., and Jones, D. S. 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretaceous Research 8:4354.CrossRefGoogle Scholar
Banerjee, A., and Boyajian, G. 1996. Changing biologic selectivity of extinction in the foraminifera over the past 150 m.y. Geology 24:607610.2.3.CO;2>CrossRefGoogle Scholar
Barnes, R. S. K., and Hughes, R. N. 1988. An introduction to marine ecology, 2d ed.Blackwell Scientific, Oxford.Google Scholar
Bromley, R. G., Jensen, M., and Asgaard, U. 1995. Spatangoid echinoids: deep-tier trace fossils and chemosymbiosis. Neues Jahrbuch für Geologie, Paläontologie und Mineralogie, Abhandlungen 195:2535.CrossRefGoogle Scholar
Carter, B. D., and Hamza, F. 1994. Substrate preferences and biofacies distributions of Egyptian Eocene echinoids. Palaios 9:237253.CrossRefGoogle Scholar
Carter, B. D., Beisel, T. H., Branch, W. B., and Mashburn, C. M. 1989. Substrate preferences of Late Eocene (Priabonian/Jacksonian) echinoids of the eastern Gulf Coast. Journal of Paleontology 63:495503.CrossRefGoogle Scholar
Chatterton, B. D. E., and Speyer, S. E. 1989. Larval ecology, life history strategies, and patterns of extinction and survivorship among Ordovician trilobites. Paleobiology 15:118132.CrossRefGoogle Scholar
Cys, J. M. 1967. The inability of dinosaurs to hibernate as a possible key factor in their extinction. Journal of Paleontology 41:266267.Google Scholar
David, B. 1988. Origins of the deep-sea holasteroid fauna. Pp. 331346in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
Eble, G. J. 1998. Diversification of disasteroids, holasteroids and spatangoids in the Mesozoic. Pp. 629638in Mooi, R. and Telford, M., eds. Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Elliot, D. H., Askin, R. A., Kyte, F. T., and Zinsmeister, W. J. 1994. Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: implications for the K-T event. Geology 22:675678.2.3.CO;2>CrossRefGoogle Scholar
Emlet, R. B. 1985. Crystal axes in Recent and fossil echinoids indicate trophic mode in larval development. Science 230:937940.CrossRefGoogle ScholarPubMed
Emlet, R. B. 1988. Crystallographic axes of echinoid genital plates reflect larval form: some phylogenetic implications. Pp. 299310in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
Emlet, R. B. 1989. Apical skeletons of sea urchins (Echinodermata: Echinoidea): two methods for inferring mode of larval development. Paleobiology 15:223254.CrossRefGoogle Scholar
Emlet, R. B. 1995. Developmental mode and species geographic range in regular sea urchins (Echinodermata: Echinoidea). Evolution 49:476489.CrossRefGoogle ScholarPubMed
Erwin, D. H. 1989a. The end-Permian mass extinction: what really happened and did it matter? Trends in Ecology and Evolution 4:225229.CrossRefGoogle ScholarPubMed
Erwin, D. H. 1989b. Regional paleoecology of Permian gastropod genera, southwestern United States, and the end-Permian mass extinction. Palaios 4:424438.CrossRefGoogle Scholar
Erwin, D. H. 1990. The end-Permian mass extinction. Annual Reviews in Ecology and Systematics 21:6991.CrossRefGoogle Scholar
Erwin, D. H. 1996. The mother of mass extinctions. Scientific American 275:5662.CrossRefGoogle Scholar
Farris, J. S. 1988. Hennig86, Version 1. 5[MSDOS computer program].Google Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783791.CrossRefGoogle ScholarPubMed
Gallagher, W. B. 1991. Selective extinction and survival across the Cretaceous/Tertiary boundary in the northern Atlantic Coastal Plain. Geology 19:967970.2.3.CO;2>CrossRefGoogle Scholar
Giese, A. C. 1966. On the biochemical constitution of some echinoderms. Pp. 757796in Boolootian, R. A., ed. Physiology of Echinodermata: a collective effort by a group of experts. Interscience, New York.Google Scholar
Hansen, T. A., Farrell, B. R., and Upshaw, B. III. 1993. The first 2 million years after the Cretaceous-Tertiary boundary in east Texas: rate and paleoecology of the molluscan recovery. Paleobiology 19:251265.CrossRefGoogle Scholar
Hayami, I. 1997. Size changes of bivalves and a hypothesis about the cause of mass extinction. Fossils 62:24.Google Scholar
House, M. R. 1985. Correlation of mid-Paleozoic ammonoid evolutionary events with global sedimentary perturbations. Nature 313:1722.CrossRefGoogle Scholar
Hubbard, A. E., and Gilinsky, N. L. 1992. Mass extinctions as statistical phenomena: an examination of the evidence using chi-squared tests and bootstrapping. Paleobiology 18:148160.CrossRefGoogle Scholar
Jablonski, D. 1986a. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129131.CrossRefGoogle ScholarPubMed
Jablonski, D. 1986b. Larval ecology and macroevolution in marine invertebrates. Bulletin of Marine Science 39:565587.Google Scholar
Jablonski, D. 1989. The biology of mass extinction: a paleontological view. Philosophical Transactions of the Royal Society of London B 325:357368.Google Scholar
Jablonski, D. 1991. Extinctions: a paleontological perspective. Science 253:754757.CrossRefGoogle ScholarPubMed
Jablonski, D. 1995. Extinctions in the fossil record. Pp. 2544in Lawton, J. H. and May, R. M., eds. Extinction rates. Oxford University Press, Oxford.CrossRefGoogle Scholar
Jablonski, D. 1996. Mass extinctions: persistent problems and new directions. Pp. 19in Ryder, et al. 1996.Google Scholar
Jablonski, D. 1997. Progress at the K-T boundary. Nature 387:354355.CrossRefGoogle Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.CrossRefGoogle ScholarPubMed
Jeffery, C. H. 1997a. All change at the Cretaceous-Tertiary boundary? Echinoids from the Maastrichtian and Danian of the Mangyshlak Peninsula, Kazakhstan. Palaeontology 40:659712.Google Scholar
Jeffery, C. H. 1997b. Echinoid evolution across the Cretaceous-Tertiary boundary. . University of London, London.Google Scholar
Jeffery, C. H. 1997c. Dawn of echinoid nonplanktotrophy: coordinated shifts in development indicate environmental instability prior to the K-T boundary. Geology 25:991994.2.3.CO;2>CrossRefGoogle Scholar
Jeffery, C. H. 1998. Carrying on regardless: the echinoid genus Cyclaster at the Cretaceous-Tertiary boundary. Lethaia 31:149157.CrossRefGoogle Scholar
Jeffery, C. H., and Smith, A. B. 1998. Estimating extinction levels for echinoids across the Cretaceous-Tertiary boundary. Pp. 695701in Mooi, R. and Telford, M., eds. Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Kaiho, K. 1994. Planktonic and benthic foraminiferal extinction events during the last 100 m.y. Palaeogeography, Palaeoclimatology, Palaeoecology 111:4571.CrossRefGoogle Scholar
Kanazawa, K. 1992. Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology 35:733750.Google Scholar
Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous Bivalvia. Philosophical Transactions of the Royal Society of London B 284:277304.Google Scholar
Keller, G. 1996. The Cretaceous-Tertiary mass extinction in planktonic foraminifera: biotic constraints for catastrophe theories. Pp. 4984in MacLeod, N. and Keller, G., eds. Cretaceous-Tertiary mass extinctions. Norton, New York.Google Scholar
Keller, G. R., Barrera, E., Schmitz, B., and Mattson, E. 1993. Gradual mass extinction, species survivorship, and long-term environmental changes across the Cretaceous-Tertiary boundary in high latitudes. Geological Society of America Bulletin 105:979997.2.3.CO;2>CrossRefGoogle Scholar
Kennedy, W. J. 1989. Thoughts on the evolution and extinction of Cretaceous ammonites. Proceedings of the Geologists' Association 100:251279.CrossRefGoogle Scholar
Kennedy, W. J. 1993. Ammonite faunas of the European Maastrichtian; diversity and extinction. In House, M. R., ed. The Ammonoidea: environment, ecology and evolutionary change. Systematics Association Special Volume 47:285326. Clarendon, Oxford.Google Scholar
Kier, P. M. 1967. Sexual dimorphism in an Eocene echinoid. Journal of Paleontology 41:988993.Google Scholar
Kier, P. M. 1969. Sexual dimorphism in fossil echinoids. Pp. 215222in Westermann, G. E. G., ed. Sexual dimorphism in fossil metazoa and taxonomic implications. Symposium organized by the International Palaeontological Union, Committee on Evolution, Prague1968. Schweizerbart, Stuttgart.Google Scholar
Kier, P. M. 1972. Tertiary and Mesozoic echinoids of Saudi Arabia. Smithsonian Contributions to Paleobiology 10.CrossRefGoogle Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. Paleontological Society Memoir 5. Journal of Paleontology 48(Suppl.):195.CrossRefGoogle Scholar
Kier, P. M. 1977. The poor fossil record of the regular echinoid. Paleobiology 3:168174.CrossRefGoogle Scholar
Kier, P. M. 1984. Fossil spatangoid echinoids of Cuba. Smithsonian Contributions to Paleobiology 55.CrossRefGoogle Scholar
Kier, P. M., and Lawson, M. H. 1978. Index of living and fossil echinoids 1924–1970. Smithsonian Contributions to Paleobiology 34.CrossRefGoogle Scholar
Koch, C. F. 1995. Sampling effects, species-sediment relationships, and observed geographic distribution: an uppermost Cretaceous bivalve example. Geobios 18:237241.CrossRefGoogle Scholar
Lambert, J., and Thiéry, P. 1909–25. Essai de nomenclature raisonnée des échinides. Librairie Septime Ferrière, Chaumont.Google Scholar
Landman, N. H. 1984. Not to be or to be? Natural History 93(8):3442.Google Scholar
Lawrence, J. 1987. A functional biology of echinoderms. Croom Helm, London.Google Scholar
Lessa, E. P., and Fariña, R. A. 1996. Reassessment of extinction patterns among the Late Pleistocene mammals of South America. Palaeontology 39:651662.Google Scholar
Levinton, J. S. 1996. Trophic group and the end-Cretaceous extinction: did deposit feeders have it made in the shade? Paleobiology 22:104112.CrossRefGoogle Scholar
MacLeod, N. 1996. K/T redux. Paleobiology 22:311317.CrossRefGoogle Scholar
MacLeod, N., and Keller, G. 1994. Comparative biogeographic analysis of planktic foraminiferal survivorship across the Cretaceous/Tertiary (K/T) boundary. Paleobiology 20:143177.CrossRefGoogle Scholar
Margolis, S., Mount, F., Doehne, E., Showers, W., and Ward, P. 1987. The Cretaceous/Tertiary boundary carbon and oxygen isotope stratigraphy, diagenesis, and paleoceanography at Zumaya, Spain. Paleoceanography 2:361377.CrossRefGoogle Scholar
Marshall, C. R. 1995. Distinguishing between sudden and gradual extinctions in the fossil record: predicting the position of the Cretaceous-Tertiary iridium anomaly using the ammonite fossil record on Seymour Island, Antarctica. Geology 23:731734.2.3.CO;2>CrossRefGoogle Scholar
Marshall, C. R., and Ward, P. D. 1996. Sudden and gradual molluscan extinctions in the Latest Cretaceous of western European Tethys. Science 274:13601363.CrossRefGoogle ScholarPubMed
McClure, M., and Bohonak, A. J. 1995. Non-selectivity in extinction of bivalves in the Late Cretaceous of the Atlantic and Gulf Coastal Plain of North America. Journal of Evolutionary Biology 8:779794.CrossRefGoogle Scholar
McGhee, G. R. 1996. The late Devonian mass extinction: the Frasnian/Famennian crisis. Columbia University Press, New York.Google Scholar
McKinney, M. L. 1985. Mass extinction patterns of marine invertebrate groups and some implications for a causal phenomenon. Paleobiology 11:227233.CrossRefGoogle Scholar
McKinney, M. L. 1987. Taxonomic selectivity and continuous variation in mass and background extinctions of marine taxa. Nature 325:143145.CrossRefGoogle Scholar
McKinney, M. L. 1995. Extinction selectivity among lower taxa: gradational patterns and rarefaction error in extinction estimates. Paleobiology 21:300313.CrossRefGoogle Scholar
McNamara, K. J. 1994. Diversity of Cenozoic marsupiate echinoids as an environmental indicator. Lethaia 27:257268.CrossRefGoogle Scholar
Mooi, R., and David, B. 1996. Phylogenetic analysis of extreme morphologies: deep-sea holasteroid echinoids. Journal of Natural History 30:913953.CrossRefGoogle Scholar
Moskvin, M. M., and Poslavskaya, N. A. 1959. Echinodermata. Pp. 237304in Moskvin, M. M., ed. Atlas of the Upper Cretaceous fauna of the northern Caucasus and Crimea. Gas Industry of the U.S.S.R, Moscow. [In Russian.]Google Scholar
Moskvin, M. M., Solovjev, A. N., and Endelman, L. G. 1980. Class Echinoidea. Pp. 116175in Menner, V. V. et al., eds. Evolution and change in invertebrates at the boundary of the Mesozoic and Cenozoic. Nauka, Moscow. [In Russian.]Google Scholar
Paul, C. R. C., and Mitchell, S. F. 1994. Is famine a common factor in marine mass extinctions? Geology 22:679682.2.3.CO;2>CrossRefGoogle Scholar
Poslavskaya, N. A., and Moskvin, M. M. 1960. Echinoids of the Order Spatangoida in Danian and adjacent deposits of Crimea, Caucasus and the Transcaspian Region. Pp. 4782in International Geological Congress 21st session. Reports of Soviet geologists problem 5: the Cretaceous-Tertiary boundary. Publishing house of the Academy of Sciences of the USSR, Moscow. [In Russian.]Google Scholar
Pospichal, J. J. 1996. Calcareous nannoplankton mass extinction at the Cretaceous/Tertiary boundary: an update. Pp. 335360in Ryder, et al. 1996.Google Scholar
Raup, D. M. 1986. Biological extinction in earth history. Science 231:15281533.CrossRefGoogle ScholarPubMed
Raup, D. M. 1995. The role of extinction in evolution. Pp. 109124in Fitch, W. M. and Ayala, F. J., eds. Tempo and mode in evolution. NAS Press, Washington, D.C.Google Scholar
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.CrossRefGoogle ScholarPubMed
Raup, D. M., and Jablonski, D. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Rhodes, M. C., and Thayer, C. W. 1991. Mass extinctions: ecological selectivity and primary production. Geology 19:877880.2.3.CO;2>CrossRefGoogle Scholar
Roman, J. 1984. Les échinidés et la crise Crétacé-Tertiaire. Bulletin de la Section des Sciences, Comité des Travaux Historiques et Scientifiques 6:133147.Google Scholar
Rosen, B. R., and Turnsek, D. 1989. Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Memoir of the Association of Australasian Palaeontologists 8:355370.Google Scholar
Ryder, G., Fastovsky, D., and Gartner, S., eds. 1996. The Cretaceous-Tertiary event and other catastrophes in earth history. Geological Society of America Special Paper 307.Google Scholar
Scotese, C. R., Gahagan, L. M., and Larson, R. L. 1988. Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics 155:2748.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1987. Environmental trends in extinction during the Phanerozoic. Science 235:6466.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology 19:168184.CrossRefGoogle ScholarPubMed
Sheehan, P. M., and Hansen, T. A. 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.2.0.CO;2>CrossRefGoogle Scholar
Sheehan, P. M., Coorough, P. J., and Fastovsky, D. E. 1996. Biotic selectivity during the K/T and Late Ordovician extinction events. Pp. 477489in Ryder et al. 1996.CrossRefGoogle Scholar
Shimanskii, V. N., and Solovjev, A. N. 1982. The limit of the Mesozoic and Caenozoic in the development of the organic world. Nauka, Moscow. [In Russian.]Google Scholar
Smith, A. B. 1980a. The structure and arrangement of echinoid tubercles. Philosophical Transactions of the Royal Society of London B 289:154.Google Scholar
Smith, A. B. 1980b. The structure, function and evolution of tube feet and ambulacral pores in irregular echinoids. Palaeontology 23:3984.Google Scholar
Smith, A. B. 1984. Echinoid paleobiology. Allen and Unwin, London.Google Scholar
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction in echinoids at the end of the Cretaceous period. Nature 392:6971.CrossRefGoogle Scholar
Smith, A. B., and Jeffery, C. H. 2000. Maastrichtian and Palaeocene echinoids: a key to world faunas. Special Papers in Palaeontology 63.Google Scholar
Smith, A. B., Gallemí, J., Jeffery, C. H., Ernst, G., and Ward, P. D. 1999. Late Cretaceous-early Tertiary echinoids from northern Spain: implications for the Cretaceous-Tertiary extinction event. Bulletin of the Natural History Museum London (Geology) 55:81137.Google Scholar
Sohl, N. F. 1987. Cretaceous gastropods: contrasts between Tethys and the temperate provinces. Journal of Paleontology 61:10851111.CrossRefGoogle Scholar
Solow, A. R. 1996. Tests and confidence intervals for a common upper endpoint in fossil taxa. Paleobiology 22:406410.CrossRefGoogle Scholar
Sorauf, J. E., and Pedder, A. E. H. 1986. Late Devonian rugose corals and the Frasnian-Famennian crisis. Canadian Journal of Earth Sciences 23:12651287.CrossRefGoogle Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.CrossRefGoogle Scholar
Stokes, R. B. 1979. An analysis of the ranges of spatangoid echinoid genera and their bearing on the Cretaceous/Tertiary boundary. Pp. 7882in Christensen, W. Kegel and Birkelund, T., eds. Cretaceous-Tertiary boundary events symposium, Vol. 2. Proceedings. University of Copenhagen.Google Scholar
Swofford, D. L. 1993. PAUP: phylogenetic analysis using parsimony, Version 3.1.1. Computer program distributed by the Illinois National History Survey, Champaign.Google Scholar
Valentine, J. W., and Jablonski, D. 1986. Mass extinctions: Sensitivity of marine larval types. Proceedings of the National Academy of Sciences USA 83:69126914.CrossRefGoogle ScholarPubMed
Ward, P. D., Kennedy, W. J., and MacLeod, K. G. 1991. Ammonite and inoceramid extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain). Geology 19:11811183.2.3.CO;2>CrossRefGoogle Scholar
Westrop, S. R. 1989. Macroevolutionary implications of mass extinction: evidence from an Upper Cambrian stage boundary. Paleobiology 15:4652.CrossRefGoogle Scholar
Westrop, S. R. 1991. Intercontinental variation in mass extinction patterns: influence of biogeographic structure. Paleobiology 17:363368.CrossRefGoogle Scholar
Wingard, G. L. 1993. A detailed taxonomy of the Upper Cretaceous and Lower Tertiary Crassatellidae in the eastern United States: an example of the nature of extinction at the boundary. U.S. Geological Survey Professional Paper 1535.CrossRefGoogle Scholar
Zachos, J. C. M. A. Arthur, and Dean, W. E. 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:6164.CrossRefGoogle Scholar
Zar, J. H. 1984. Biostatistical analysis, 2d ed.Prentice-Hall, Englewood Cliffs, N.J.Google Scholar