Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T13:41:56.872Z Has data issue: false hasContentIssue false

Growth oscillation in larger foraminifera

Published online by Cambridge University Press:  08 April 2016

Antonino Briguglio
Affiliation:
Department of Palaeontology, University of Vienna, Vienna 1090, Austria. E-mail: [email protected]
Johann Hohenegger
Affiliation:
Department of Palaeontology, University of Vienna, Vienna 1090, Austria. E-mail: [email protected]

Abstract

This work shows the potential for applying three-dimensional biometry to studying cell growth in larger benthic foraminifera. The volume of each test chamber was measured from the three-dimensional model obtained by means of computed tomography. Analyses of cell growth based on the sequence of chamber volumes revealed constant and significant oscillations for all investigated specimens, characterized by periods of approximately 15, 30, 90, and 360 days. Possible explanations for these periods are connected to tides, lunar cycles, and seasonality. The potential to record environmental oscillations or fluctuations during the lifetime of larger foraminifera is pivotal for reconstructing short-term paleoenvironmental variations or for gaining insight into the influence of tides or tidal current on the shallow-water benthic fauna in both recent and fossil environments.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barker, S., Cacho, I., Benway, H., and Tachikawa, K. 2005. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews 24:821834.Google Scholar
Batschelet, E. 1971. Introduction to mathematics for life scientists. Springer, Berlin.CrossRefGoogle Scholar
Beavington-Penney, S. J., and Racey, A. 2004. Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Science Reviews 67:219265.Google Scholar
Benedetti, A., and Briguglio, A. 2012. Risananeiza crassaparies n. sp. from the Late Chattian of Porto Badisco (southern Apulia). Bollettino della Società Paleontologica Italiana 51:167176.Google Scholar
Bijma, J., Erez, J., and Hemleben, C. 1990. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. Journal of Foraminiferal Research 20:117127.Google Scholar
Briguglio, A., and Benedetti, A. 2012. X-ray microtomography as a tool to present and discuss new taxa: the example of Risananeiza sp. from the late Chattian of Porto Badisco. Rendiconti Online Società Geologica Italiana 21:10721074.Google Scholar
Briguglio, A., and Hohenegger, J. 2009. Nummulitids hydrodynamics: an example using Nummulites globulus Leymerie, 1846. Bollettino della Società Paleontologica Italiana 48:105111.Google Scholar
Briguglio, A., and Hohenegger, J. 2011. How to react to shallow water hydrodynamics: the larger benthic foraminifera solution. Marine Micropaleontology 81:6376.Google Scholar
Briguglio, A., Metscher, B., and Hohenegger, J. 2011. Growth rate biometric quantification by x-ray microtomography on larger benthic foraminifera: three-dimensional measurements push nummulitids into the fourth dimension. Turkish Journal of Earth Science 20:683699.Google Scholar
Briguglio, A., Hohenegger, J., and Less, G. 2013. Paleobiological applications of three-dimensional biometry on larger benthic foraminifera; a new route of discoveries. Journal of Foraminiferal Research 43:6782.Google Scholar
Briguglio, A., Wöger, J., Wolfgring, E., and Hohenegger, J. 2014. Changing investigation perspectives: methods and applications of computed tomography on Larger Benthic Foraminifera. Pp. 5570inKitazato and Bernhard 2014.Google Scholar
Dettmering, C., Röttger, R., Hohenegger, J., and Schaljohann, R. 1998. The trimorphic life cycle in foraminifera: observations from cultures allow new evaluation. European Journal of Protistology 34:363368.Google Scholar
Egger, H., Briguglio, A., Rögl, F., and Darga, R. 2013. The basal Lutetian Transgression on the Tethyan shelf of the European craton (Adelholzen formation, Eastern Alps, Germany). Newsletter of Stratigraphy 46:287301.Google Scholar
Evans, D., Müller, W., Oron, S., and Renema, W. 2013. Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera. Earth and Planetary Science Letters 381:104115.Google Scholar
Ferràndez-Cañadell, C. 2012. Multispiral growth in Nummulites: paleobiological implications. Marine Micropaleontology 97:105122.Google Scholar
Fraile, I., Mulitza, S., and Schulz, M. 2009. Modeling planktonic foraminiferal seasonality: implications for sea-surface temperature reconstructions. Marine Micropaleontology 72:19.Google Scholar
Fulton, T. W. 1901. The rate of growth of the cod, haddock, whiting, and Norway pout. Pp. 154228inNineteenth Annual Report of the Fishery Board for Scotland, Part II.Google Scholar
Gebhardt, H., Ćorić, S., Darga, R., Briguglio, A., Schenk, B., Werner, W., Andersen, N., and Sames, B. 2013. Middle to Late Eocene paleoenvironmental changes in a marine transgressive sequence from the northern Tethyan margin (Adelholzen, Germany). Austrian Journal of Earth Science 106:4572.Google Scholar
Görög, A., Szinger, B., Toth, E., and Viszkok, J. 2012. Methodology of the micro-computer tomography on foraminifera. Palaeontologia Electronica 15 (1), art. 3T.Google Scholar
Hallock, P. 1981. Production of carbonate sediments by selected large benthic foraminifera on two Pacific coral reefs. Journal of Sedimentary Petrology 51:467474.Google Scholar
Hallock, P. 1985. Why are larger foraminifera large? Paleobiology 11:195208.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (4), art. 1. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Hohenegger, J. 1996. Remarks on the distribution of larger foraminifera (Protozoa) from Belau (Western Carolines). Kagoshima University Research Center for the South Pacific, Occasional Papers 30:8590.Google Scholar
Hohenegger, J. 2004. Depth coenoclines and environmental considerations of western pacific larger foraminifera. Journal of Foraminiferal Research.34:933.CrossRefGoogle Scholar
Hohenegger, J. 2006. The importance of symbiont-bearing benthic foraminifera for West Pacific carbonate beach environments. Marine Micropaleontology 61:439.Google Scholar
Hohenegger, J. 2009. Functional shell geometry of symbiont-bearing benthic foraminifera. Galaxea 11:19.Google Scholar
Hohenegger, J., and Briguglio, A. 2012 Axially oriented sections of nummulitids: a tool to interpret larger benthic foraminiferal deposits. Journal of Foraminiferal Research 42:145153.Google Scholar
Hohenegger, J., and Briguglio, A. 2014. Methods for estimating growth pattern and lifetime of foraminifera based on chamber volumes. Pp. 2954inKitazato and Bernhard 2014.Google Scholar
Hohenegger, J., Yordanova, E., Nakano, Y., and Tatzreiter, F. 1999. Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology 36:109168.Google Scholar
Hohenegger, J., Briguglio, A., and Eder, W. 2014. The natural laboratory of symbiont-bearing benthic foraminifera Studying individual growth and population dynamics in the sublittoral. Pp. 1328inKitazato and Bernhard 2014.Google Scholar
Hottinger, L. 1982. Larger foraminifera, giant cells with a historical background. Naturwissenschaften 69:361371.Google Scholar
Hottinger, L. 1997. Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bulletin de la Société Géologique de France 168:491505.Google Scholar
Hottinger, L. 2000. Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. Micropaleontology 46:5786.Google Scholar
Hottinger, L. 2006. Illustrated glossary of terms used in foraminiferal research. Notebooks of Geology 2006/2:14. http://paleopolis.rediris.es/cg/CG2006_M02/index.html.CrossRefGoogle Scholar
King, A., and Howard, W. R. 2005. δ18O seasonality of planktonic foraminifera from Southern Ocean sediment traps: latitudinal gradients and implications for paleoclimate reconstructions. Marine Micropaleontology 56:124.Google Scholar
Kitazato, H., and Bernhard, J., eds. 2014. Experimental approaches in foraminifera: collection, maintenance, and experimentation. Springer Japan (Environmental Science Series), Osaka.Google Scholar
Kosuge, T., Shimizu, H., and Yano, K. 1997. What can we find in the fore reef area? Dredging results in coastal waters of Ihigaki Jima. Research Station for the Western Sea (Nishi Kai Sui Ken). News 19:69. [In Japanese.]Google Scholar
Krüger, R. 1994. Untersuchungen zum Entwicklungsgang rezenter Nummulitiden: Heterostegina depressa, Nummulites venosus und Cycloclypeus carpenteri. Ph.D. thesis. Christian-Albrechts-Universität, Kiel.Google Scholar
Lietz, R. 1996. Untersuchungen zur Individualentwicklung der Großforaminifere Cycloclypeus carpenteri Carpenter (1856). Master's thesis. Institut für Allgemeine Mikrobiologie an der Christian-Albrechts- Universität, Kiel.Google Scholar
Mercier, A., Sun, Z., Baillon, S., and Hamel, J. F. 2011. Lunar rhythms in the deep sea: evidence from the reproductive periodicity of several marine invertebrates. Journal of Biological Rhythms 26:8286.Google Scholar
Naylor, E. 1982. Tidal and lunar rhythms in animals and plants. InBrady, J., ed. Biological timekeeping. Society of Experimental Biology Seminar Series 14:3348.Google Scholar
Olsson, R. K. 1973. What is a kummerform planktonic foraminifer? Journal of Paleontology 47:327329.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical recipes. Cambridge University Press, Cambridge.Google Scholar
Purton, L. M. A., and Brasier, M. D. 1999. Giant protist Nummulites and its Eocene environment: life span and habitat insights from δ18O and δ 13C data from Nummulites and Venericardia, Hampshire basin, UK. Geology 27:711714.Google Scholar
Rigual-Hernández, A. S., Sierro, F. J., Bárcena, M. A., Flores, J. A., and Heussner, S. 2012. Seasonal and interannual changes of planktic foraminiferal fluxes in the Gulf of Lions (NW Mediterranean) and their implications for paleoceanographic studies: two 12-year sediment trap records. Deep-Sea Research Part I: Oceanographic Research Papers 66:2640.Google Scholar
Röttger, R. 1972. Analyse von Wachstumskurven von Heterostegina depressa (Foraminifera: Nummulitidae). Marine Biology 17:228242.Google Scholar
Röttger, R. 1990. Biology of larger foraminifera: present status of the hypothesis of trimorphism and ontogeny of the gamont of Heterostegina depressa. Pp. 4354inTakyanagi, Y. and Saito, T., eds. Studies in benthic foraminifera: Benthos '90. Proceedings of the Fourth International Symposium on Benthic Foraminifera. Tokai University Press, Sendai.Google Scholar
Röttger, R., and Spindler, M. 1976. Development of Heterostegina depressa individuals (Foraminifera, Nummulitidae) in laboratory cultures. InShafer, C. T. and Pelletier, B. R., eds. First international symposium on benthonic foraminifera of continental margins, Part A, ecology and biology. Maritime Sediments Special Publication 1:8187.Google Scholar
Schmidt, D. N., Rayfield, E. J., Cocking, A., Marone, F. 2013. Linking evolution and development: synchrotron radiation X-ray tomographic microscopy of planktic foraminifers. Palaeontology 56:741749.Google Scholar
Schulz, M., and Mudelsee, M. 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences 28:421426.Google Scholar
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A. K., Less, G., Pavlovec, R., Pignatti, J., Samso, J. M., Schaub, H., Sirel, E., Strougo, A. A., Tambareau, Y., Tosquella, J., and Zakrevskaya, E. 1998. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société Géologique de France 169:281299.Google Scholar
Speijer, R. P., Van Loo, D., Masschaele, B., Vlassenbroeck, J., Cnudde, V., and Jacobs, P. 2008. Quantifying foraminiferal growth with high-resolution X-ray computed tomography: new opportunities in foraminiferal ontogeny, phylogeny, and paleoceanography applications. Geosphere 4:760763.Google Scholar
Tyszka, J. 2004. Analysis of test ontogenesis (ATO) in small foraminifera: implications from Pseudonodosinella. InKaminsky, M. A. and Coccioni, R., eds. Proceedings of the Sixth International Workshop on Agglutinated Foraminifera, Prague. Grzybowski Foundation Special Publication 8:471483.Google Scholar
Zuo, S. H., Zhang, N. C., Li, B., Zhang, Z., Zhu, Z. X. 2009. Numerical simulation of tidal current and erosion and sedimentation in the Yangshan deep-water harbor of Shanghai. International Journal of Sediment Research 24:287298.Google Scholar