Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T05:26:49.127Z Has data issue: false hasContentIssue false

Geographical restriction as a guide to the causes of extinction: the case of the cold northern oceans during the Neogene

Published online by Cambridge University Press:  08 April 2016

Geerat J. Vermeij*
Affiliation:
Department of Geology, University of California, Davis, California 95616

Abstract

Geographical restriction to refuges implies the regional extinction of taxa in areas of the previous range falling outside the refuge. A comparison of the circumstances in the refuge with those in areas from which the taxa were eliminated is potentially informative for pinpointing the causes of extinction. A synthesis of data on the geographical and stratigraphical distributions of cool-water molluscs of the North Pacific and North Atlantic Oceans during the late Neogene reveals four patterns of geographical restriction, at least two of which imply that climatic cooling was not the only cause of extinction during the last several million years. These four patterns are (1) the northwestern Pacific restriction, involving 15 taxa whose amphi-Pacific distributions during the late Neogene became subsequently restricted to the Asian side of the Pacific; (2) the northwestern Atlantic restriction, involving six taxa whose early Pleistocene distribution is inferred to have been amphi-Atlantic, but whose present-day and late Pleistocene ranges are confined to the northwestern Atlantic; (3) a vicariant Pacific pattern, in which many ancestral amphi-Pacific taxa gave rise to separate eastern and western descendants; and (4) the circumboreal restriction, involving six taxa whose early Pleistocene distribution, encompassing both the Atlantic and Pacific Oceans, became subsequently limited to the North Pacific. Like the Pliocene extinctions in the Atlantic, previously studied by Stanley and others, the vicariant Pacific pattern is most reasonably interpreted as having resulted from regional extinction of northern populations in response to cooling. The northwestern Pacific and Atlantic restrictions, however, cannot be accounted for in this way. In contrast to the northeastern margins of the Pacific and Atlantic, the northwestern margins are today characterized by wide temperature fluctuations and by extensive development of shore ice in winter. Northeastern, rather than northwestern, restriction would be expected if cooling were the overriding cause of regional extinction. Among the other possible causes of extinction, only a decrease in primary productivity can account for the observed northwestern and circumboreal patterns of restriction. Geographical patterns of body size and the distribution of siliceous deposits provide supporting evidence that primary productivity declined after the Miocene in the northeastern Pacific, but remained high in the northwestern Pacific, and that productivity in the Pacific is generally higher than it is in the Atlantic. The patterns of geographical restriction in the northern oceans thus provide additional support to previous inferences that reductions in primary productivity have played a significant role in marine extinctions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Addicott, W. O. 1969a. Late Pliocene mollusks from San Francisco Peninsula, California, and their paleogeographic significance. Proceedings of the California Academy of Sciences 37:5793.Google Scholar
Addicott, W. O. 1969b. Tertiary climatic change in the marginal northeastern Pacific Ocean. Science 165:583586.CrossRefGoogle ScholarPubMed
Addicott, W. O. 1974. Giant pectinids of the eastern North Pacific margin: significance in Neogene zoogeography and chronostratigraphy. Journal of Paleontology 48:180194.Google Scholar
Addicott, W. O. 1976. Neogene molluscan stages of Oregon and Washington. Pp. 95115. In Neogene Symposium, Pacific Section, Annual Meeting, Society of Economic Paleontologists and Mineralogists, San Francisco.Google Scholar
Addicott, W. O. 1977. Neogene chronostratigraphy of near-shore marine basins of the eastern North Pacific. Pp. 151175. Proceedings of the First International Congress of Pacific Neogene Stratigraphy, Tokyo.Google Scholar
Addicott, W. O. 1978. Late Miocene mollusks from the Queen Charlotte Islands, British Columbia, Canada. Journal of Research of the United States Geological Survey 6:677690.Google Scholar
Addicott, W. O. 1983. Biostratigraphy of the marine Neogene sequence at Cape Blanco, southwestern Oregon. United States Geological Survey Professional Paper 774-G:G1G17.Google Scholar
Aksu, A. E., Mudie, P. J., Macko, S. A., and de Vernal, A. 1988. Cenozoic history of the Labrador Sea, Baffin Bay, and the Arctic Ocean: a paleoclimatic and paleoceanographic summary. Paleoceanography 3:519538.Google Scholar
Allison, R. C. 1973. Marine paleoclimatology and paleoecology of a Pleistocene invertebrate fauna from Amchitka Island, Aleutian Islands, Alaska. Palaeogeography, Palaeoclimatology, Palaeoecology 13:1548.Google Scholar
Allison, R. C. 1978. Late Oligocene through Pleistocene molluscan faunas in the Gulf of Alaska region. Veliger 21:171188.Google Scholar
Amano, K. 1984. An occurrence of Clinopegma borealis Tiba from the Pliocene Rumoi Formation in the Rumoi area, Hokkaido, Japan. Venus 43:101105.Google Scholar
Arthur, M. A., Zakos, J. C., and Jones, D. S. 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretaceous Research 8:4354.CrossRefGoogle Scholar
Balson, P. S. 1987. Authigenic phosphorite concretions in the Tertiary of the southern North Sea basin: an event stratigraphy. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie 24:7994.Google Scholar
Barron, J. A. 1981. Marine diatom biostratigraphy of the Montesano Formation near Aberdeen, Washington. Geological Society of America Special Paper 184:113126.Google Scholar
Barron, J. A. 1986. Paleoceanographic and tectonic controls on deposition of the Monterey Formation and related siliceous rocks in California. Palaeogeography, Palaeoclimatology, Palaeoecology 53:2745.CrossRefGoogle Scholar
Barron, J. A., and Baldauf, J. B. 1989. Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous sediments. Pp. 341354. In Berger, W. H. (ed.), Productivity of the Oceans: Present and Past. Wiley; New York.Google Scholar
Bernard, F. R. 1979a. Identification of the living Mya (Bivalvia: Myoida). Venus 38:185204.Google Scholar
Bernard, F. R. 1979b. Bivalve mollusks of the western Beaufort Sea. Contributions in Science, Natural History Museum of Los Angeles County 313:180.Google Scholar
Bernard, F. R. 1983. Catalogue of the living Bivalvia of the eastern Pacific Ocean: Bering Strait to Cape Horn. Special Publication in Fisheries and Aquatic Sciences 61:1102.Google Scholar
Beu, A. G., and Maxwell, P. A. 1987. A revision of the fossil and living gastropods related to Plesiotriton Fischer, 1884 (family Cancellariidae, subfamily Plesiotritoninae n. subfam.), with an appendix: genera of Buccinidae Pisaniinae related to Colubraria Schumacher, 1817. New Zealand Geological Survey Paleontological Bulletin 54:1140.Google Scholar
Birkeland, C. E. 1989. Geographic comparisons of coral-reef community processes. Proceedings of the Sixth International Coral Reef Congress, in press.Google Scholar
Bouchet, P. 1981. Evolution of larval development in eastern Atlantic Terebridae (Gastropoda), Neogene to Recent. Malacologia 21:363369.Google Scholar
Bouchet, P., and A. Warén. 1979. The abyssal molluscan fauna of the Norwegian Sea and its relation to other faunas. Sarsia 64:211243.Google Scholar
Bouchet, P., and A. Warén. 1985. Revision of the northeast Atlantic bathyal and abyssal Neogastropoda excluding Turridae (Mollusca, Gastropoda). Bolletino Malacologico Supplemento 1:123296.Google Scholar
Bouchet, P., and A. Warén. 1986. Revision of the northeast Atlantic bathyal and abyssal Aclididae, Eulimidae, Epitoniidae (Mollusca, Gastropoda). Bolletino Malacologico Supplemento 2:299576.Google Scholar
Brébion, P. 1988. L'évolution dans le temps et l'espace des gastéropodes marins dans la province nordique depuis le Miocène. Bulletin du Musée National d'Histoire Naturelle (Section C, Sciences de la Terre) 10:163173.Google Scholar
Briggs, J. C. 1974. Marine Zoogeography. McGraw Hill; New York.Google Scholar
Brouwers, E. M., and Marincovich, L. Jr. 1988. Ostracode and molluscan assemblages from the late Neogene Nuwok Member of the Sagavanirktok Formation, North Slope. United States Geological Survey Circular 1016:2426.Google Scholar
Brown, K. M., and Quinn, J. F. 1988. The effect of wave action on growth in three species of intertidal gastropods. Oecologia (Berlin) 75:420425.Google Scholar
van der Burg, W. J. 1987. Stratigraphic distribution of Pliocene molluscs from deposits in the northern Peel district in The Netherlands. Basteria 51:2532.Google Scholar
Carlton, J. T., Vermeij, G. J., Lindberg, D. R., and Dudley, E. C. 1990. The first historical extinction of a marine invertebrate. Biological Bulletin, submitted.Google Scholar
Chinzei, K. 1959. Molluscan fauna of the Pliocene Sannohe Group of northeast Honshu, Japan. 1. The faunule of the Kubo Formation. Journal of the Faculty of Sciences of the University of Tokyo 12:103132.Google Scholar
Chinzei, K. 1986. Faunal succession and geographic distribution of Neogene molluscan faunas in Japan. Palaeontological Society of Japan Special Paper 29:1732.Google Scholar
Clarke, A. H., Grant, D. R., and MacPherson, E. 1972. The relationship of Atractodon stonei (Pilsbry) (Mollusca, Buccinidae) to the Pleistocene stratigraphy and paleoecology of southwestern Nova Scotia. Canadian Journal of Earth Sciences 9:10301038.CrossRefGoogle Scholar
Coan, E. V. 1969. Recognition of an eastern Pacific Macoma in the Coralline Crag of England and its biogeographic significance. Veliger 11:277279.Google Scholar
Coan, E. V. 1971. The northwest American Tellinidae. Veliger 14(supplement):163.Google Scholar
Coe, W. R., and Fox, D. L. 1942. Biology of the California Sea-Mussel (Mytilus californianus). I. Influence of temperature, food supply, sex and age on the rate of growth. Journal of Experimental Zoology 90:130.Google Scholar
Copper, P. 1977. Paleolatitudes in the Devonian of Brazil and the Frasnian–Famennian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 21:165207.Google Scholar
Copper, P. 1986. Frasnian/Famennian mass extinction and coldwater oceans. Geology 14:835839.Google Scholar
Cronin, T. M. 1988. Evolution of marine climates of the U.S. Atlantic coast during the last four million years. Philosophical Transactions of the Royal Society of London (B) 318:661678.Google Scholar
Cronin, T. M., and Ikeya, N. 1987. The Omma-Manganji ostracod fauna (Plio-Pleistocene) of Japan and the zoogeography of circumpolar species. Journal of Micropaleontology 6:6588.CrossRefGoogle Scholar
Dayton, P. K., Robilliard, G. A., and Paine, R. T. 1970. Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. Pp. 244256. In Holdgate, M. W. (ed.), Antarctic Ecology Volume 1. Academic Press; London.Google Scholar
Dayton, P. K., Robilliard, G. A., Paine, R. T., and Dayton, L. B. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs 44:105128.Google Scholar
Domning, D. P. 1978. Sirenian evolution in the North Pacific Ocean. University of California Publications in Geological Sciences 118:1176.Google Scholar
Druehl, L. D. 1981. The distribution of Laminariales in the North Pacific with reference to environmental influences. Pp. 5567. In Scudder, G. G. E., and Reveal, J. L. (eds.), Evolution Today. Proceedings of the Second International Congress of Systematic and Evolutionary Biology. Hunt Institute of Botanical Documentation, Carnegie-Mellon University; Pittsburgh.Google Scholar
Duggins, D. O., Simenstad, C. A., and Estes, J. A. 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170173.Google Scholar
Eckert, J. D. 1988. Late Ordovician extinction of North American and British crinoids. Lethaia 21:147167.Google Scholar
Estes, J. A., and Steinberg, P. D. 1988. Predation, herbivory, and kelp evolution. Paleobiology 14:1936.Google Scholar
Eyles, N., and Lagoe, M. B. 1989. Sedimentology of shell-rich deposits (coquinas) in the glaciomarine upper Cenozoic Yakataga Formation, Middleton Island, Alaska. Geological Society of America Bulletin 101:129142.Google Scholar
Flessa, K. W., Erben, H. K., Hallam, A., Hsü, K. J., Hüssner, H. M.Jablonski, D., Raup, D. M., Sepkoski, J. J. Jr., Soule, M. E., Sousa, W., Stinnesbeck, W., and Vermeij, G. J. 1986. Causes and consequences of extinction. Pp. 235257. In Raup, D. M., and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer Verlag; Berlin.Google Scholar
Flowerdew, M. W. 1983. Electrophoretic investigation of populations of the cirripede Balanus balanoides (L.) around the North Atlantic seaboard. Crustaceana 45:260278.Google Scholar
Fot'yanova, L. I., and Serova, M. Y. 1987. The late Miocene climatic optimum in the northeast Pacific Province. International Geology Reviews 29:515528.Google Scholar
Franz, D. R., and Merrill, A. S. 1980a. Molluscan distribution patterns on the continental shelf of the Mid-Atlantic bight (northwest Atlantic). Malacologia 19:209225.Google Scholar
Franz, D. R., and Merrill, A. S. 1980b. The origins and determinants of distribution of molluscan faunal groups on the shallow continental shelf of the northwest Atlantic. Malacologia 19:227248.Google Scholar
Freneix, S., Saint Martin, J.-P., and Moissette, P. 1988. Huitres du Messinien d'Oranie (Algérie Occidentale) et paléobiologie de l'ensemble de la faune de bivalves. Bulletin du Musée National d'Histoire Naturelle 10:121.Google Scholar
Gard, L. M. Jr. 1977. Geologic history. Pp. 1334. In Merritt, M. L., and Fuller, R. G. (eds.), The Environment of Amchitka Island, Alaska. Technical Information Center, Energy Research and Development Administration; Springfield, Virginia.Google Scholar
Gladenkov, Y. B. 1979. Cenozoic molluscan assemblages in northern regions of the Atlantic and Pacific Oceans. International Geology Reviews 21:880890.Google Scholar
Gladenkov, Y. B., Norton, P., and Spaink, G. 1980. Verkhnii Kainozoi islandii. Akademia Nauka SSSR Geological Institute 345:1114.Google Scholar
Gladenkov, Y. B., Gladikova, V. M., Kafanov, A. N., Konova, L. V., Krishtofovich, L. V., Sinel'nikova, V. N., and Popov, S. V. 1984. Marine mollusks. Pp. 152249. In Menner, V. V. (ed.), Atlas fauny i flory Neogenovykh Otlozhenii Dal'nego Vostoka. Tochilinskiy Oppornyy Razrez Zapadnoi Kamchatki. Akademia Nauka Geological Institute Trudy 345.Google Scholar
Gladenkov, Y. B., Brattseva, G. M., Mitroganova, L. I., and Sinel'nikova, V. N. 1988. Subdivision of Oligocene–Lower Miocene sequences of eastern Kamchatka: the Korf Bay section. International Geological Reviews 30:931944.Google Scholar
Glibert, M. 1958. Tableau stratigraphique des mollusques du Néogène de la Belgique. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique 34:120.Google Scholar
Glibert, M. 1959. Gastropodes du Diestien, du Scaldisien, et du Merxémien de la Belgique. Troisième note. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique 35:127.Google Scholar
Glibert, M. 1960. Gastropodes du Diestien, du Scaldisien, et du Merxémien de la Belgique. Quatrième note (fin). Annex: Additions aux pleurotomes du Basin de la Loire (France). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique 36:144.Google Scholar
Glibert, M. 1963. Les Muricacea et Buccinacea fossiles du Cenozoïque étranger des collections de l'Institut Royal des Sciences Naturelles de Belgique. Mémoire de L'Institut Royal des Sciences Naturelles de Belgique 74:1179.Google Scholar
Glibert, M., and van de Poel, L. 1967. Les Bivalvia fossiles du Cenozoïque étranger des collections de l'Institut Royal des Sciences Naturelles de Belgique. V. Oligodontina: 1er partie: Lucinacea, Cyamiacea, Leptonacea, Dreissenacea, Tellinacea. Mémoire de l'Institut Royal des Sciences Naturelles de Belgique 83:1152.Google Scholar
Glibert, M., and van de Poel, L. 1970. Les Bivalvia fossiles du Cenozoïque étranger des collections de l'Institut Royal des Sciences Naturelles de Belgique. VI. Oligodontina (2): Astartidontina et Septibranchida. Mémoire de l'Institut Royal des Sciences Naturelles de Belgique 84:1185.Google Scholar
Golikov, A. N., and Gulbin, V. V. 1977. Prosobranchial gastropods of the Kurile Islands. II. Orders Hamiglossa-Homeostropha. “Nauka,” Moscow:172268.Google Scholar
Golikov, A. N., and Gulbin, V. V. 1978. Prosobranchial gastropods of the Kurile Islands. I. Orders Docoglossa-Entomostoma. Pp. 159223. In Kussakin, O. G. (ed.), Fauna and Vegetation of the Shelf of the Kurile Islands. Academy of Sciences, USSR, Far East Science Center, Institute of Marine Biology.Google Scholar
Golikov, A. N., and Scarlato, O. A. 1967. Molluscs of the Possiet Bay (the Sea of Japan) and their ecology. Akademia Nauka Trudy Zoological Institute 42:5154.Google Scholar
Golikov, A. N., and Scarlato, O. A. 1985. Shell-bearing gastropods and bivalves of the shelf of south Sakhalin and their ecology. Issledovaniia Fauny Morei 30:368490.Google Scholar
Golikov, A. N., and Sirenko, B. I. 1988. The naticid gastropods in the boreal waters of the western Pacific and Arctic Oceans. Malacological Reviews 21:141.Google Scholar
Grant, U. S. IV, and Gale, H. R. 1931. Catalogue of the marine Pliocene and Pleistocene Mollusca of California and adjacent regions. Memoir of the San Diego Society of Natural History 1:11035.Google Scholar
Grebmeier, J. M., and McRoy, C. P. 1989. Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. III. Benthic food supply and carbon cycling. Marine Ecology Progress Series 53:7991.Google Scholar
Gründel, J. 1976. Zur Taxonomie und Phylogenie der Bittium-Gruppe. Malacologische Abhandlungen 5:3359.Google Scholar
Gustavson, T. C. 1972. A warm-water Pleistocene fauna from the Gardners Clay of eastern Long Island. Journal of Paleontology 46:447449.Google Scholar
Habe, T. 1955. Fauna of Akkeshi Bay XXI. Pelecypoda and Scaphopoda. Publications of the Akkeshi Marine Biological Station 4:131.Google Scholar
Habe, T. 1958. Fauna of Akkeshi Bay XXV. Gastropoda. Publications of the Akkeshi Marine Biological Station 8:139.Google Scholar
Habe, T. 1960. Fauna of shell-bearing mollusks of the sea around Shirikishinai, Hokkaido 1. Pelecypoda. Fauna and Flora of the Sea Around the Shirikishinai Marine Station 2:110.Google Scholar
Habe, T. 1961. Fauna of shell-bearing mollusks of the sea around Shirikishinai, Hokkaido 2. Gastropoda. Fauna and Flora of the Sea Around the Shirikishinai Marine Station 3:111.Google Scholar
Habe, T., and Sato, J. 1973. A classification of the family Buccinidae from the North Pacific. Proceedings of the Japanese Society of Systematic Zoology 8:18.Google Scholar
Hallam, A. 1986. The Pliensbachian and Tithonian extinction events. Nature 319:765768.CrossRefGoogle Scholar
Hallam, A. 1987. End-Cretaceous mass extinction event: argument for terrestrial causation. Science 238:12371242.Google Scholar
Hansen, T. A. 1987. Extinction of late Eocene to Oligocene molluscs: relationship to shelf area, temperature changes, and impact events. Palaios 2:6975.Google Scholar
den Hartog, C. 1970. The Sea-Grasses of the World. North-Holland; Amsterdam.Google Scholar
Hedgecock, D., Nelson, K., Simons, J., and Shleser, R. 1977. Generic similarity of American and European species of the lobster Homarus. Biological Bulletin 152:4150.Google Scholar
Herman, Y., and Hopkins, D. M. 1980. Arctic oceanic climate in late Cenozoic time. Science 209:557562.Google Scholar
Hinga, K. R. 1985. Evidence for a higher average productivity in the Pacific than in the Atlantic Ocean. Deep-Sea Research 32:117126.Google Scholar
Hoagland, K. E. 1977. Systematic review of fossil and Recent Crepidula and discussion of evolution of the Calyptraeidae. Malacologia 16:353420.Google Scholar
Honda, Y. 1986. A Paleogene molluscan fauna from Hokkaido, northern Japan. Palaeontological Society of Japan Special Paper 29:316.Google Scholar
Hopkins, D. M., and Marincovich, L. Jr. 1981. Extinction and extralimital mollusks in Pelukian deposits of Kogro River and Eskimo Islands. Pp. 240245. In Smith, P. A., Hartz, R. W., and Hopkins, D. M. (eds.), Offshore Permafrost Studies and Shoreline History as an Aid to Predicting Offshore Permafrost Conditions. NOAA Environmental Assessment of the Alaskan Continental Shelf, Annual Report 4, Appendix H.Google Scholar
Hopkins, D. M., and Marincovich, L. Jr. 1984. Whale biogeography and the history of the Arctic basin. Pp. 724. In Arctic Whaling: Proceedings of the International Symposium on Arctic Whaling, Groningen University, Netherlands, February, 1981. University of Groningen, Works of the Arctic Center 8.Google Scholar
Hsü, K. J. 1986. Environmental changes in times of biotic crisis. Pp. 297312. In Raup, D. M., and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer Verlag; Berlin.Google Scholar
Humphreys, B., and Balson, P. S. 1985. Authigenic glaucony in the East Anglian crags. Proceedings of the Geologists' Association 96:183188.Google Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.Google Scholar
Jablonski, D., and Flessa, K. W. 1986. The taxonomic structure of shallow-water marine faunas: implications for Phanerozoic extinctions. Malacologia 27:4366.Google Scholar
Janssen, A. W. 1981. Tridonta zelandica Janssen and van der Slik, 1974, a junior synonym of Astarte alaskensis Dall, 1903. Basteria 45:8586.Google Scholar
Janssen, A. W., Peeters, G. A., and van der Slik, L. 1984. De fossiele schelpen van de Nederlandse stranden en zeegaten, tweede serie. VIII. Basteria 48:91219.Google Scholar
Kafanov, A. I. 1984. The Cenozoic history of the molluscan fauna of the North Pacific shelf. Canadian Translations in Fisheries and Aquatic Sciences 5052:177.Google Scholar
Kafanov, A. I. 1986. Comparison of the geographical and stratigraphical ranges of Fortipectininae and Patinopectininae (Bivalvia: Pectinidae). Monographs of the Mizunami Fossil Museum 6:2340.Google Scholar
Kanno, S. 1962. Molluscan fauna from the so-called Setana Formation, southwestern Hokkaido, Japan. Science Reports of the Tokyo Kyoiku Daigaku (C) 8:1730.Google Scholar
Kanno, S. 1971. Tertiary molluscan fauna from the Yakataga district and adjacent areas of southern Alaska. Palaeontological Society of Japan Special Paper 16:1154.Google Scholar
Kanno, S. 1973. Japanese Tertiary cassidids (Gastropoda) and their related mollusks from the west coast of North America. Science Reports of Tohoku University (2: Geology) Special Volume 6:217233.Google Scholar
Kanno, S., Noda, H., Amano, K., Majima, R., and Ito, M. 1980. Preliminary report on the geology and paleontology of the environs of Teshio, Hokkaido, part 1. Human Culture and Environmental Studies in Northern Hokkaido 1:521.Google Scholar
Keen, A. M. 1941. Molluscan species common to western North America and Japan. Sixth Pacific Science Congress, Oceanography and Marine Biology 3:479483.Google Scholar
Keigwin, L. D. 1986. North Atlantic record of late Neogene climatic change. South African Journal of Science 82:499.Google Scholar
Kennett, J. P., and Hodell, D. A. 1986. Major events in Neogene oxygen isotopic records. South African Journal of Science 82:497498.Google Scholar
Knox, G. A. 1980. Plate tectonics and the evolution of intertidal and shallow-water benthic biotic distribution patterns of the southwest Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 31:267297.Google Scholar
Kosuge, S. 1979. Report on the Mollusca collected from Ishikari Bay and its adjacent waters by the R.V. Tansei-Maru during Cruise KT-67-7 (1967). Bulletin of the Institute of Malacology of Tokyo 1:912.Google Scholar
Kotaka, T. 1962. Marine Mollusca dredged by the “S. S. Hokuho-Maru” during the 1959 in the Okhotsk Sea. Science Reports of Tohoku University, Sendai, Japan (2: Geology) Special Volume 5:127158.Google Scholar
Kuroda, T., and Koba, K. 1933. Molluscan fauna of the northern Kurile Islands. Bulletin of the Biogeographical Society of Japan 4:151170.Google Scholar
Ladd, H. S. 1960. Origin of the Pacific island molluscan fauna. American Journal of Science 258:137150.Google Scholar
Lagoe, M. B. 1983. Oligocene through Pliocene Foraminifera from the Yakataga Reef section, Gulf of Alaska Tertiary Province, Alaska. Micropaleontology 29:202222.Google Scholar
Leigh, E. G. Jr., Paine, R. T., Quinn, J. F., and Suchanek, T. H. 1987. Wave energy and intertidal productivity. Proceedings of the National Academy of Sciences of the United States of America 84:13141318.Google Scholar
Lindberg, D. R. 1982. Taxonomic notes on members of the genus Collisella from the North Pacific Ocean, including a description of a new species from Alaska (Gastropoda: Acmaeidae). Wasmann Journal of Biology 40:4858.Google Scholar
Lindberg, D. R. 1988. The Patellogastropoda. Malacological Reviews Supplement 4:3563.Google Scholar
Lindberg, D. R., and Marincovich, L. Jr. 1988. New species of limpets from the Neogene of Alaska (Patellogastropoda: Mollusca). Arctic 41:167172.Google Scholar
Lipps, J. H. 1986. Extinction dynamics in pelagic ecosystems. Pp. 87104. In Elliott, D. K. (ed.), Dynamics of Extinction. Wiley; New York.Google Scholar
Loubere, P. 1988. Gradual late Pliocene onset of glaciation: a deep-sea record from the northeast Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 63:327334.Google Scholar
MacNeil, F. S. 1965. Evolution and distribution of the genus Mya, and Tertiary migrations of Mollusca. United States Geological Survey Professional Paper 483-G:G1G51.Google Scholar
Magaritz, M. 1989. 13C minima follow extinction events: a clue to faunal radiation. Geology 17:337340.Google Scholar
Mann, K. H. 1973. Seaweeds: their productivity and strategy of growth. Science 182:975981.Google Scholar
Mann, K. H., Chapman, A. R. O., and Gagné, J. A. 1980. Productivity of seaweeds: the potential and the reality. Pp. 363380. In Falkowski, P. G. (ed.), Primary Productivity in the Sea. Plenum; New York.Google Scholar
Marincovich, L. Jr. 1977. Cenozoic Naticidae (Mollusca: Gastropoda) of the northeastern Pacific. Bulletins of American Paleontology 70:169494.Google Scholar
Marincovich, L. Jr. 1983. Molluscan paleontology, paleoecology, and North Pacific correlations of the Miocene Tachilni Formation, Alaska Peninsula, Alaska. Bulletins of American Paleontology 84:59155.Google Scholar
Marincovich, L. Jr. 1984. Eastern Pacific molluscan bio-events and their relation to Neogene planktonic datum planes. Pp. 6973. In Ikebe, N., and Tsuchi, R. (eds.), Pacific Neogene Datum Planes: Contributions to Biostratigraphy and Chronology. University of Tokyo Press; Tokyo.Google Scholar
Marincovich, L. Jr. 1988. Miocene mollusks from the lower part of the Bear Lake Formation on Ukolnoi Island, Alaska Peninsula, Alaska. Contributions in Science, Natural History Museum of Los Angeles County 397:120.Google Scholar
Marincovich, L. Jr., and Kase, T. 1986. An occurrence of Turritella (Hataiella) sagai in Alaska: implications for the age of the Bear Lake Formation. Bulletin of the National Science Museum of Tokyo (C) 12:6166.Google Scholar
Martin, J. H., and Frrzwater, S. E. 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341343.Google Scholar
Masuda, K. 1971. On some Patinopecten from North America. Transactions and Proceedings of the Palaeontological Society of Japan (n.s.) 83:166178.Google Scholar
Masuda, K. 1972. Swiftopecten of the northern Pacific. Transactions and Proceedings of the Palaeontological Society of Japan (n.s.) 87:395408.Google Scholar
Masuda, K. 1978. Neogene Pectinidae of the northern Pacific. Veliger 21:197202.Google Scholar
Masuda, K. 1986. Notes on origin and migration of Cenozoic pectinids in the northern Pacific. Palaeontological Society of Japan Special Paper 29:95110.Google Scholar
Masuda, K., and Addicott, W. O. 1970. On Pecten (Amusium) condoni Hertlein from the west coast of North America. Veliger 13:153156.Google Scholar
Matsukuma, A. 1986. Cenozoic glycymeridid bivalves of Japan. Palaeontological Society of Japan Special Paper 29:7794.Google Scholar
McKinney, M. L. 1987. Taxonomic selectivity and continuous variation in mass and background extinctions of marine taxa. Nature 325:143145.Google Scholar
Meehan, B. W. 1985. Genetic comparison of Macoma balthica (Bivalvia, Tellinidae) from the eastern and western North Atlantic Ocean. Marine Ecology Progress Series 22:6976.Google Scholar
Mongin, D. 1959. Study of some American Miocene lamellibranchs and comparison with related European species. Bulletins of American Paleontology 39:283343.Google Scholar
Moore, E. J. 1984. Molluscan paleontology and biostratigraphy of the upper part of the Lower Miocene Lincoln Creek Formation in southwestern Washington. Contributions in Science, Natural History Museum of Los Angeles County 351:142.Google Scholar
Nesis, K. N. 1965. Ecology of Cyrtodaria siliqua and history of the genus Cyrtodaria (Bivalvia: Hiatellidae). Malacologia 3:197210.Google Scholar
Noda, H. 1978. Neogene anadaran distribution in Japan and southeast Asia. Annual Report of the Institute of Geosciences, University of Tsukuba 4:3337.Google Scholar
Noda, H., and Amano, K. 1977. Geological significance of Anadara amicula elongata from the Pliocene Kume Formation, Ibaraki Prefecture, Japan. Annual Report of the Institute of Geosciences, University of Tsukuba 3:3741.Google Scholar
Noda, H., and Amano, K. 1985. Preliminary report on the geology and paleontology of the environs of Teshio, Hokkaido. Part 6. The occurrence of the Genno-Ishi and its associated marine molluscan fossils from the Pliocene “Yuchi” Formation. Human Culture and Environmental Studies in Northern Hokkaido 3:113.Google Scholar
Noda, H., and Amano, K. 1986. Preliminary report on the geology and paleontology of the environs of Teshio, Hokkaido. Part 7. Anadara (Anadara) uozumii and some associated molluscan fossils from the Pliocene “Yuchi” Formation. Human Culture and Environmental Studies in Northern Hokkaido 7:112.Google Scholar
Noda, H., and Amano, K. 1987. Preliminary report on the geology and paleontology of the environs of Teshio, Hokkaido. Part 8-2. First occurrence of Neptunea soluta (Gastropoda) from the Pliocene “Yuchi” Formation. Human Culture and Environmental Studies in Northern Hokkaido 13:1519.Google Scholar
Noda, H., Amano, K., Majima, R., Ito, M., and Kanno, S. 1983. Preliminary report on the geology and paleontology of the environs of Teshio, Hokkaido. Part 4. Molluscan fossils from the lower part of the Pliocene “Yuchi” Formation. Human Culture and Environmental Studies in Northern Hokkaido 4:112.Google Scholar
Noda, H., Amano, K., and Majima, R. 1984. Preliminary report on the geology and paleontology of the environs of Teshio, Hokkaido. Part 5. Crenomytilus grayanus (Dunker) from the Pliocene “Yuchi” Formation in Teshio, Hokkaido. Human Culture and Environmental Studies in Northern Hokkaido 5:111.Google Scholar
Ockelmann, W. K. 1954. On the interrelationship and the zoogeography of northern species of Yoldia Möller, S. Str. (Mollusca, fam. Ledidae) with a new subspecies. Medelelser om Grönland 107:132.Google Scholar
Ogasawara, K. 1986. Notes on origin and migration of the Omma-Manganzian fauna, Japan. Palaeontological Society of Japan Special Paper 29:227244.Google Scholar
Ogasawara, K., Sasaki, O., and Chiba, N. 1988. The Dainenjian molluscan association from the environs of Sendai, northeast Honshu and its zoogeographic significance. Saito Ho-On Kai Museum of Natural History Bulletin 56:115.Google Scholar
Pain, T. 1987. The genus Clinopegma Grant and Gale 1931 (Prosobranchia: Buccinidae). Conchiglia 19:310.Google Scholar
Petuch, E. J. 1981. A relict Neogene caenogastropod fauna from northern South America. Malacologia 20:307347.Google Scholar
Petuch, E. J. 1982. Geographical heterochrony: contemporaneous coexistence of Neogene and Recent molluscan faunas in the Americas. Palaeogeography, Palaeoclimatology, Palaeoecology 37:277312.Google Scholar
Raffi, S., Stanley, S. M., and R. Marasti. 1985. Biogeographic patterns and Plio-Pleistocene extinction of Bivalvia in the Mediterranean and southern North Sea. Paleobiology 11:368388.Google Scholar
Reid, D. G. 1989. Trans-Arctic migration and speciation induced by climatic change: the biogeography of Littorina (Mollusca: Gastropoda). Hydrobiologia, in press.Google Scholar
Repenning, C. A., Brouwers, E. M., Carter, L. D., Marincovich, L. Jr., and Ager, T. A. 1987. The Beringian ancestry of Phenacomys (Rodentia: Cricetidae) and the beginning of the modern Arctic Ocean borderland biota. United States Geological Survey Bulletin 1687:131.Google Scholar
Richards, H. G. 1962. Studies on the marine Pleistocene: Part II. The marine Pleistocene mollusks of eastern North America. Transactions of the American Philosophical Society (n.s.) 52:42141.Google Scholar
Riggs, S. R. 1984. Paleoceanographic model of Neogene phosphorite deposition, U.S. Atlantic continental margin. Science 223:123131.Google Scholar
Robba, E. 1987. The final occlusion of Tethys: its bearing on Mediterranean benthic molluscs. Pp. 405426. In McKenzie, K. G. (ed.), Shallow Tethys 2: Proceedings of the International Symposium on Shallow Tethys 2, Wagga Wagga, 15–17 September, 1986. Balkema; Rotterdam.Google Scholar
Romine, K. 1985. Radiolarian biogeography and paleoceanography of the North Pacific at 8 Ma. Geological Society of America Memoir 163:237272.Google Scholar
Sancetta, C., and Silvestri, S. 1986. Pliocene-Pleistocene evolution of the North Pacific ocean-atmosphere system, interpreted from fossil diatoms. Paleoceanography 1:163180.Google Scholar
Scarlato, O. A., and Ivanova, M. Y. 1974. Bivalve mollusks from the intertidal zone of the Kurile Islands. Pp. 300317. Collected Works of the Institute of Marine Biology, Far Eastern Science Center, Academy of the USSR.Google Scholar
Schenck, H. G. 1936. Nuculid bivalves of the genus Acila. Geological Society of America Special Paper 4:1149.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82:129143.Google Scholar
Seed, R. 1969. The ecology of Mytilus edulis L. (Lamellibranchia) on exposed rocky shores. II. Growth and mortality. Oecologia (Berlin) 3:317350.Google Scholar
Shackleton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddleston, P., Keene, J. B., Kaltenback, A. J., Krumsiek, K. A. O., Morton, A. C., Murray, J. W., and Westberg-Smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620623.Google Scholar
Sheehan, P. M., and Hansen, T. A. 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.Google Scholar
Shikama, T. 1967. System and evolution of Japanese fulgorarid Gastropoda. Science Reports of Yokohama National University (II) 13:23132.Google Scholar
Sinel'nikova, V. N., Skiba, L. A., Fot'yanova, L. I., Il'ina, A. P., Kuklina, T. A., and Chekhovskaya, M. P. 1979. Early Pliocene of western Kamchatka (Enemten Suite). Nauka Trudy Institute of Geological Science SSSR 333:1238.Google Scholar
Soot-Ryen, T. 1955. A report on the family Mytilidae (Pelecypoda). Allan Hancock Pacific Expeditions 20:1176.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman and Company; San Francisco.Google Scholar
Stanley, S. M. 1984. Temperature and biotic crises in the marine realm. Geology 12:205208.Google Scholar
Stanley, S. M. 1986a. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:1736.Google Scholar
Stanley, S. M. 1986b. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.CrossRefGoogle Scholar
Stanley, S. M. 1988. Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. American Journal of Science 288:334352.Google Scholar
Strauch, F. 1970. Die Thule-Landbrücke als Wanderweg und Faunenscheide zwischen Atlantik und Skandik im Tertiär. Geologische Rundschau 60:381417.Google Scholar
Strauch, F. 1972. Phylogenese, Adaptation und Migration bei einiger nordischer mariner Molluskengenera (Neptunea, Panomya, Cyrtodaria und Mya). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 531:1211.Google Scholar
Tappan, H. 1968. Primary production, isotopes, extinctions and the atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology 4:187210.Google Scholar
Tappan, H. 1970. Phytoplankton abundance and late Paleozoic extinctions: a reply. Palaeogeography, Palaeoclimatology, Palaeoecology 8:4966.Google Scholar
Tappan, H. 1982. Extinction or survival: selectivity and causes of Phanerozoic crises. Geological Society of America Special Paper 190:265276.Google Scholar
Uozumi, S., Takagi, T., and Suzuki, A. 1986a. Yabepecten tokunagai and Mizuhopecten tokyoensis of Hokkaido—characteristics of boreal molluscs and paleobiogeographic position of Hokkaido. Monographs of the Mizunami Fossil Museum 6:7589.Google Scholar
Uozumi, S., Akamatsu, K., and Takagi, T. 1986b. Takikawa-Honbetsu and Tatsunokuchi faunas (Fortipecten takahashii-bearing Pliocene faunas). Palaeontological Society of Japan Special Paper 29:211226.Google Scholar
van Urk, R. M. 1971. Fossil Ensis species in the Netherlands. Basteria 35:137.Google Scholar
van Urk, R. M. 1972. Notes on American fossil Ensis species. Basteria 36:131142.Google Scholar
Varvio, S.-L., Koehn, R. K., and Vainola, R. 1988. Evolutionary genetics of the Mytilus edulis complex in the North Atlantic region. Marine Biology 98:5160.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation: Patterns of Marine Life. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Vermeij, G. J. 1980. Gastropod growth rate, allometry, and adult size: environmental implications. Pp. 379394. In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum; New York.Google Scholar
Vermeij, G. J. 1986a. The biology of human-caused extinction. Pp. 2849. In Norton, B. G. (ed.), The Preservation of Species. Princeton University Press; Princeton, New Jersey.Google Scholar
Vermeij, G. J. 1986b. Survival during biotic crises: the properties and evolutionary significance of refuges. Pp. 231246. In Elliott, D. K. (ed.), Dynamics of Extinction. Wiley; New York.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press; Princeton, New Jersey.Google Scholar
Vermeij, G. J. 1989. Invasion and extinction: the last three million years of North Sea pelecypod history. Conservation Biology, in press.Google Scholar
Vermeij, G. J., and Collins, T. M. 1988. Nerita fortidentata, a new gastropod from the Neogene of Panamá, with comments on the fossil record of Nerita in tropical America. Nautilus 102:102105.Google Scholar
Vermeij, G. J., and Petuch, E. J. 1986. Differential extinction in tropical American molluscs: endemism, architecture, and the Panama land bridge. Malacologia 27:2941.Google Scholar
Vermeij, G. J., Dudley, E. C., and Zipser, E. 1989. Successful and unsuccessful drilling predation in Recent pelecypods. Veliger 32:266273.Google Scholar
Walsh, J. J. 1988. On the Nature of Continental Shelves. Academic Press; San Diego, California.Google Scholar
Weaver, C. E. 1942. Paleontology of the marine Tertiary formations of Oregon and Washington. University of Washington Publications in Geology 5:1790.Google Scholar
Weaver, C. E. 1945. Stratigraphy and paleontology of the Tertiary formations at Coos Bay, Oregon. University of Washington Publications in Geology 6:3162.Google Scholar
Webb, S. D. 1985. Late Cenozoic mammal dispersals between the Americas. Pp. 357386. In Stehli, F. G., and Webb, S. D. (eds.), The Great American Biotic Interchange. Plenum; New York.Google Scholar
Wethey, D. S. 1985. Catastrophe, extinction, and species diversity: a rocky intertidal example. Ecology 66:445456.Google Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. American Philosophical Society Proceedings 110:425433.Google Scholar
Woodruff, F. 1985. Changes in Miocene deep-sea benthic foraminiferal distribution in the Pacific Ocean: relationship to paleoceanography. Geological Society of America Memoir 163:131175.Google Scholar
Zhidkova, L. S., Bevz, V. E., Il'ina, A. P., Krishtofovich, L. V., Neverova, T. I., Savitskii, V. O., and Sheremet'eva, G. N. 1972. Atlas of Neogene mollusks of the Kuril Islands. “Nauka”; Moscow. (Translated by Al-Ahram Center for Scientific Translation.)Google Scholar
Zullo, V. A. 1968. Balanus hopkinsi, new species, and B. balanus (Linnaeus, 1758) (Cirripedia, Thoracica) from Plio-Pleistocene sediments on Tjörnes, northern Iceland. Occasional Papers of the California Academy of Sciences 69:111.Google Scholar