Article contents
Extinction selectivity among lower taxa: gradational patterns and rarefaction error in extinction estimates
Published online by Cambridge University Press: 08 February 2016
Abstract
Documenting past environmental disturbances will provide a very incomplete explanation of extinctions until more data on intrinsic (e.g., phylogenetic) responses to disturbances are collected. Taxonomic selectivity can be used to infer phylogenetic inheritance of extinction-biasing traits. Selectivity patterns among higher taxa, such as between mammals and bivalves, are well documented. Selectivity patterns among lower taxa (genus, species) have great potential for understanding the dynamics underlying higher taxic turnover. Two echinoid data sets, of fossil and living taxa, indicate that species extinctions do not occur randomly within genera. Reverse rarefaction estimates of past species extinction rates assume random species extinction within higher taxa, so these widely cited extinction estimates may be inaccurate. Revised estimates based on a simulated curve imply that past species extinctions rates may be 6%–15% lower than previously cited. Possible causes for the observed selectivity patterns are discussed. These include nonrandom phylogenetic nesting of species with traits often cited as enhancing extinction vulnerability, into certain taxa. Such traits include low abundance, large body size, narrow niche breadth, and many others. Phylogenetic nesting of extinction-biasing traits at many taxonomic levels does not predict that a dichotomy of mass-background selectivity based on a few traits will occur. Instead, it predicts patterns of selectivity at many taxonomic levels, and at many spatio-temporal scales.
- Type
- Articles
- Information
- Copyright
- Copyright © The Paleontological Society
References
Literature Cited
- 35
- Cited by