Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T17:17:37.122Z Has data issue: false hasContentIssue false

Examining the latitudinal diversity gradient in Paleozoic terebratulide brachiopods: should singleton data be removed?

Published online by Cambridge University Press:  08 April 2016

Paul C. Fitzgerald
Affiliation:
Department of Geology, University of California, Davis, California 95616. E-mail: [email protected]
Sandra J. Carlson
Affiliation:
Department of Geology, University of California, Davis, California 95616. E-mail: [email protected]

Abstract

Studies of taxonomic diversity over time commonly count and compare first- and last-appearance data (FADs and LADs) over a succession of temporal intervals, and interpret them with respect to taxon origination and extinction. Singleton taxa, which first appear and last appear in the same temporal interval, are often removed from analyses because they might result from preservational biases rather than evolutionary processes, or they might represent non-independent FADs and LADs. Should singleton taxa always be excluded? We argue that in the case of Paleozoic terebratulide brachiopods, although they may be sensitive to biases in sampling intensity, singleton genera should be included in diversity studies because they do not appear to result from more typical biases, such as Lagerstätten and temporal interval length, that arguably can result in artificially high numbers of singleton genera.

Singleton genera can be critical and effective when used to test hypotheses regarding the existence and generation of latitudinal diversity gradients. Contrary to the anti-tropical diversity pattern of modern articulated brachiopods, Paleozoic terebratulides show a latitudinal diversity gradient that peaks in the Tropics. The hypothesis that the Tropics are either a diversity source or sink can be tested by comparing FAD and LAD latitudes. For singleton genera, FAD and LAD latitudes are taken from the same data points and must be removed for statistical comparisons to be valid. We suggest that taxon age distributions can accommodate singleton data, as the taxon age metric considers origination and extinction simultaneously. We generated taxon age distributions to test the hypothesis that the observed Paleozoic diversity gradient results from a latitudinal bias in generic turnover rate. We discovered that singletons are not randomly distributed over latitude, with proportionally more singleton genera occurring in the Tropics. In this case, singleton genera may reflect rapid evolutionary turnover of taxa, rather than simply preservational bias. Methods that can accommodate singleton taxa should be used to study the diversity of Paleozoic terebratulides and possibly other well-skeletonized marine metazoans.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

AlAasm, I. S., and Azmy, K. K. 1996. Diagenesis and evolution of microporosity of Middle-Upper Devonian Kee Scarp reefs, Norman Wells, Northwest Territories, Canada: petrographic and chemical evidence. AAPG Bulletin 80:82100.Google Scholar
Allison, P. A., and Briggs, D. E. G. 1993. Paleolatitudinal sampling bias, Phanerozoic species-diversity, and the end-Permian extinction. Geology 21:6568.Google Scholar
Beus, S. S. 1991. The distribution and orientation of shells from a brachiopod population, Permian Kaibab Formation, northern Arizona, USA. Pp. 233239in MacKinnon, D. I., Lee, D. E., and Campbell, J. D., eds. Brachiopods through time. Proceedings of the Second International Brachiopod Congress, University of Otago, Dunedin, New Zealand, 5–9 February 1990. A. A. Balkema, Rotterdam.Google Scholar
Bojar, A. V., Hiden, H., Fenninger, A., and Neubauer, F. 2004. Middle Miocene seasonal temperature changes in the Styrian basin, Austria, as recorded by the isotopic composition of pectinid and brachiopod shells. Palaeogeography, Palaeoclimatology, Palaeoecology 203:95105.Google Scholar
Brunton, C. H. C. 1981. British Dinantian (Lower Carboniferous) terebratulid brachiopods. Bulletin of the British Museum (Natural History) Geology 36(2):4557.Google Scholar
Buzas, M. A., Collins, L. S., and Culver, S. J. 2002. Latitudinal difference in biodiversity caused by higher tropical rate of increase. Proceedings of the National Academy of Sciences USA 99:78417843.Google Scholar
Carlson, S. J., Fitzgerald, P. C., Leighton, L. R., and Kaplan, P. A. 2004. Examining patterns of taxonomic and phylogenetic extinction selectivity in Paleozoic terebratulide brachiopods. Geological Society of America Abstracts with Programs 36:525.Google Scholar
Cecca, F., Vrielynck, B., Lavoyer, T., and Gaget, H. 2005. Changes in the ammonite taxonomical diversity gradient during the late Jurassic-early Cretaceous. Journal of Biogeography 32:535547.Google Scholar
Chatterton, B. D. E. 1973. Brachiopods of the Murrumbidgee Group, Taemas, New South Wales. Bulletin, Bureau of Mineral Resources, Geology and Geophysics of Australia 137:1146.Google Scholar
Chen, X., Melchin, M. J., Fan, J. X., and Mitchell, C. E. 2003. Ashgillian graptolite fauna of the Yangtze region and the biogeographical distribution of diversity in the latest Ordovician. Bulletin de la Société Géologique de France 174:141148.Google Scholar
Chown, S. L., and Gaston, K. J. 2000. Areas, cradles and museums: the latitudinal gradient in species richness. Trends in Ecology and Evolution 15:311315.Google Scholar
Collard, I. F., and Foley, R. A. 2002. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules? Evolutionary Ecology Research 4:371383.Google Scholar
Cooper, G. A., and Dutro, J. T. 1982. Devonian brachiopods of New Mexico. Bulletins of American Paleontology 82–83(315):1215.Google Scholar
Cooper, G. A., and Grant, R. E. 1976. Permian brachiopods of West Texas, V. Smithsonian Contributions to Paleobiology No. 21. Smithsonian Institution Press, Washington, D.C.Google Scholar
Crame, J. A., and Clarke, A. 1997. The historical component of marine taxonomic diversity gradients. Pp. 258273in Ormond, R. F. G., Gage, J. D., and Angel, M. V., eds. Marine biodiversity: patterns and processes. Cambridge University Press, Cambridge.Google Scholar
de Queiroz, K., and Cantino, P. D. 2001. Phylogenetic nomenclature and the PhyloCode. Bulletin of Zoological Nomenclature 58:254271.Google Scholar
de Queiroz, K., and Gauthier, J. 1994. Toward a phylogenetic system of biological nomenclature. Trends in Ecology and Evolution 9:2731.Google Scholar
Doescher, R. A. 1981. Living and fossil brachiopod genera 1775–1979; lists and bibliography. Smithsonian Contributions to Paleobiology No. 42. Smithsonian Institution Press, Washington, D.C.Google Scholar
Doescher, R. A. 1996. A to Z world list of brachiopod genera-subgenera to 1995. Pp. 325360in Copper, P. and Jin, J., eds. Proceedings of the Third International Brachiopod Congress, Sudbury, Ontario, Canada, 2–5 September 1995. A. A. Balkema, Rotterdam.Google Scholar
Fischer, A. G. 1960. Latitudinal variations in organic diversity. Evolution 14:6481.Google Scholar
Fitzgerald, P. C., and Carlson, S. J. 2004. Examining the latitudinal diversity gradient in Paleozoic terebratulide brachiopods: should singleton data be removed? Geological Society of America Abstracts with Programs 36:91.Google Scholar
Fitzgerald, P. C., Leighton, L. R., and Carlson, S. J. 2002. Why are extinction probabilities of Paleozoic terebratulides higher in the tropics? Geological Society of America Abstracts with Programs 34:464.Google Scholar
Flather, C. H. 1996. Fitting species-accumulation functions and assessing regional land use impacts on avian diversity. Journal of Biogeography 23:155168.Google Scholar
Flessa, K. W., and Jablonski, D. 1996. The geography of evolutionary turnover: a global analysis of extant bivalves. Pp. 367397in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology: in honor of James W. Valentine. University of Chicago Press. Chicago.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):74102.Google Scholar
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.Google Scholar
Gaston, K. J., and Blackburn, T. M. 1996. The tropics as a museum of biological diversity: an analysis of the New World avifauna. Proceedings of the Royal Society of London B 263:6368.Google Scholar
Goldberg, E. E., Roy, K., Lande, R., and Jablonski, D. 2005. Diversity, endemism, and age distributions in macroevolutionary sources and sinks. American Naturalist 165:623633.Google Scholar
Grenfell, B. T., Bolker, B. M., and Kleczkowski, A. 1995. Seasonality and extinction in chaotic metapopulations. Proceedings of the Royal Society of London B 259:97103.Google Scholar
Hagdorn, H., and Sandy, M. R. 1998. Color banding in the Triassic terebratulid brachiopod Coenothyris from the Muschelkalk of Central Europe. Journal of Paleontology 72:1128.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale, 1989. Cambridge University Press, Cambridge.Google Scholar
Harrington, G. J. 2004. Structure of the North American vegetation gradient during the late Paleocene/early Eocene warm climate. Evolutionary Ecology Research 6:3348.Google Scholar
Hawkins, B. A., Porter, E. E., and Diniz, J. A. F. 2003. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84:16081623.Google Scholar
Hillebrand, H. 2004. Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series 273:251267.Google Scholar
Jablonski, D. 1993. The tropics as a source of evolutionary novelty through geological time. Nature 364:142144.Google Scholar
Jin, J., and Copper, P. 1999. The deep-water brachiopod Dicoelosia King, 1850, from the Early Silurian tropical carbonate shelf of Anticosti Island, eastern Canada. Journal of Paleontology 73:10421055.Google Scholar
Koch, C. F. 1978. Bias in the published fossil record. Paleobiology 4:367372.Google Scholar
Koleff, P., Lennon, J. J., and Gaston, K. J. 2003. Are there latitudinal gradients in species turnover? Global Ecology and Biogeography 12:483498.Google Scholar
Lee, D. E., MacKinnon, D. I., Smirnova, T. N., Baker, P. G., Yugan, J., and Dong-li, S.In press. Terebratulida. Revised Brachippoda. Part H, Vol. 6 of Kaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colorado, and University of Kansas Press, Lawrence.Google Scholar
Leighton, L. R. 2001. Analyzing the latitudinal diversity gradient; testing the “age of the tropics” hypothesis using deep time. Geological Society of America Abstracts with Programs 33:378.Google Scholar
Lyons, S. K., and Willig, M. R. 1999. A hemispheric assessment of scale dependence in latitudinal gradients of species richness. Ecology 80:24832491.Google Scholar
MacArthur, H. R., and Wilson, E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton, NJ.Google Scholar
Martin, P. R., and McKay, J. K. 2004. Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58:938945.Google Scholar
Nikitin, I. F., and Popov, L. E. 1996. Strophomenid and triplesiid brachiopods from an Upper Ordovician carbonate mound in central Kazakhstan. Alcheringa 20:120.Google Scholar
Novotny, V., and Basset, Y. 2000. Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564572.Google Scholar
Olszewski, T. D., and Erwin, D. H. 2004. Dynamic response of Permian brachiopod communities to long-term environmental change. Nature 428:738741.Google Scholar
Perez-Huerta, A. 2004. New Carboniferous brachiopods from the eastern Great Basin, Nevada, USA: implications for loop ontogeny and evolution in Late Palaeozoic terebratuloids. Palaeontology 47:15181537.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Preston, F. W. 1948. The commonness and rarity of species. Ecology 29:254283.Google Scholar
Rand, D. M. 1994. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends in Ecology and Evolution 9:125131.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1977. Removing sampling biases from taxonomic diversity data. Journal of Paleontology 51:2121.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Rohlf, F. J. 2004. tpsDig Version 1.4. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Rosenzweig, M. L. 1992. Species-diversity gradients—we know more and less than we thought. Journal of Mammalogy 73:715730.Google Scholar
Rosenzweig, M. L., and Sandlin, E. A. 1997. Species diversity and latitudes: listening to area's signal. Oikos 80:172176.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.Google Scholar
Savage, N. M., and Baxter, M. 1995. Late Devonian (Frasnian) brachiopods from the Wadleigh Limestone, Southeastern Alaska. Journal of Paleontology 69:10291046.Google Scholar
Scharff, N., Coddington, J. A., Griswold, C. E., Hormiga, G., and Bjorn, P. D. 2003. When to quit? Estimating spider species richness in a northern European deciduous forest. Journal of Arachnology 31:246273.Google Scholar
Scotese, C. R., and McKerrow, W. S. 1990. Revised world maps and introduction. Geological Society of London Memoir 12:121.Google Scholar
Sepkoski, J. J. Jr. 1996. Patterns of Phanerozoic extinction: a perspective from global databases. Pp. 3551in Walliser, O. H., ed. Global events and event stratigraphy in the Phanerozoic. Springer, Berlin.Google Scholar
Sepkoski, J. J. Jr., and Hulver, M. L. 1985. An atlas of Phanerozoic clade diversity diagrams. Pp. 1139in Valentine, J. W., ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, NJ.Google Scholar
Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology 3:325329.Google Scholar
Signor, P. W. 1982. Species richness in the Phanerozoic—compensating for sampling bias. Geology 10:625628.Google Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.Google Scholar
Stehli, F. G., and Helsley, C. E. 1963. Paleontologic technique for defining ancient pole positions. Science 142:10571059.CrossRefGoogle ScholarPubMed
Stehli, F. G., Douglas, R. G., and Newell, N. D. 1969. Generation and maintenance of gradients in taxonomic diversity. Science 164:947949.Google Scholar
Stenseth, N. C. 1985. The tropics: cradle or museum? Oikos 43:417420.Google Scholar
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., and Williams, S. E. 2004. Extinction risk from climate change. Nature 427:145148.Google Scholar
Ulrich, W., and Ollik, M. 2004. Frequent and occasional species and the shape of relative-abundance distributions. Diversity and Distributions 10:263269.Google Scholar
Walsh, J. A. 1996. No second chances? New perspectives on biotic interactions in post-Paleozoic brachiopod history. Pp. 281288in Copper, P. and Jin, J., eds. Proceedings of the Third International Brachiopod Congress, Sudbury, Ontario, 2–5 September 1995. A. A. Balkema, Rotterdam.Google Scholar
Westrop, S. R., and Adrain, J. M. 2001. Sampling at the species level: impact of spatial biases on diversity gradients. Geology 29:903906.Google Scholar
Williams, A., and Cusack, M. 1996. Lingulid shell mediation in clay formation. Lethaia 29:349360.Google Scholar
Yacobucci, M. M. 2005. Multifractal and white noise evolutionary dynamics in Jurassic–Cretaceous ammonoidea. Geology 33:97100.Google Scholar