Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T09:24:27.242Z Has data issue: false hasContentIssue false

Evolutionary morphology: beyond the analogous, the anecdotal, and the ad hoc

Published online by Cambridge University Press:  08 April 2016

Daniel C. Fisher*
Affiliation:
Museum of Paleontology and Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109

Abstract

Many questions have emerged recently regarding the importance and methodology of analysis of adaptation. Divergent views reflect both problems of definition and more substantive issues of interpretation. Defining the state of adaptation in terms of its contribution to current fitness, rather than origin by natural selection, is essential if natural selection is to be considered an explanation of adaptation. The context dependency and relativity of fitness apply also to adaptation. Design criteria are essential components of adaptation, but only to the extent that they are subsumed as elements of the causal interactions determining relative reproductive potential. The local, relational, contingent character of adaptation supports only limited reference to improvement. Most long-term patterns of change can be better described as diffusion within a structured design-space than as progressive improvement of design. The analysis of adaptation is part of a broader inquiry into the processes and constraints that control form and the history of changing form. It offers one perspective on how organisms operate on ecological time scales and how their configurations might be maintained or transformed over evolutionary time. Hypotheses concerning adaptation are sometimes tested by reference to predictions concerning the central tendency or trend of some aspect of an anatomical-behavioral system. These can be interpreted with minimal reference to assumptions of optimality if the analysis is viewed in terms of Bayesian inference. However, an alternative and frequently preferable approach to testing relies on limit-oriented predictions. Analysis of adaptation can be visualized as inferring the pattern and nature of interactions comprising the causal plexus that determines fitness. A comprehensive understanding of form and form-change requires that this be integrated with the perspective offered by studies of development, genetics, phylogenetic history, and external perturbations acting on the system.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. 1982. Developmental constraints in evolutionary processes. Pp. 313332. In: Bonner, J. T., ed. Evolution and Development. Springer-Verlag; Heidelberg.CrossRefGoogle Scholar
Arnold, A. J. and Fristrup, K. 1982. The theory of evolution by natural selection: a hierarchical expansion. Paleobiology. 8:113129.Google Scholar
Bayer, U. and McGhee, G. R. Jr. 1984. Iterative evolution of Middle Jurassic ammonite faunas. Lethaia. 17:116.Google Scholar
Bock, W. J. and von Wahlert, G. 1965. Adaptation and the form-function complex. Evolution. 19:269299.Google Scholar
Brady, R. H. 1979. Natural selection and the criteria by which a theory is judged. Syst. Zool. 28:600621.Google Scholar
Brandon, R. N. 1978. Adaptation and evolutionary theory. Stud. Hist. and Phil. Sci. 9:181206.Google Scholar
Burian, R. M. 1983. Adaptation. Pp. 287314. In: Grene, M., ed. Dimensions of Darwinism. Cambridge Univ. Press; Cambridge.Google Scholar
Burks, A. W. 1977. Chance, Cause, Reason. Univ. Chicago Press; Chicago.Google Scholar
Cowen, R. 1975. “Flapping valves” in brachiopods. Lethaia. 8:2329.Google Scholar
Clutton-Brock, T. H. and Harvey, P. H. 1979. Comparison and adaptation. Proc. R. Soc. London 205B:547565.Google Scholar
Cracraft, J. 1981a. The use of functional and adaptive criteria in phylogenetic systematic Amer. Zool. 21:2136.Google Scholar
Cracraft, J. 1981b. Pattern and process in paleobiology: the role of cladistic analysis in systematic paleontology. Paleobiology. 7:456468.Google Scholar
Cracraft, J. 1982. A non-equilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Syst. Zool. 31:348365.CrossRefGoogle Scholar
Cummins, R. 1975. Functional analysis. J. Phil. 72:741764.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. Murray; London.Google Scholar
De Mar, R. E. 1976. Functional morphological models: evolutionary and non-evolutionary. Fieldiana: Geol. 33:339354.Google Scholar
Dobzhansky, T. 1956. What is an adaptive trait? Amer. Nat. 90:337347.Google Scholar
Dobzhansky, T., Ayala, F. J., Stebbins, G. L., and Valentine, J. W. 1977. Evolution. W. H. Freeman; San Francisco.Google Scholar
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia Univ. Press; New York.Google Scholar
Fisher, D. C. 1977. Functional significance of spines in the Pennsylvanian horseshoe crab Euproops danae. Paleobiology 3:175195.CrossRefGoogle Scholar
Fisher, D. C. 1979. Evidence for subaerial activity of Euproops danae (Merostomata, Xiphosurida). Pp. 379447. In: Nitecki, M. H., ed. Mazon Creek Fossils. Academic Press; New York.Google Scholar
Fisher, D. C. 1981. The role of functional analysis in phylogenetic inference: examples from the history of the Xiphosura. Amer. Zool. 21:4762.Google Scholar
Fisher, D. C. 1982. Phylogenetic and macroevolutionary patterns within the Xiphosurida. Proc. 3d N. Am. Paleontol. Conv. 1:175180.Google Scholar
Fisher, D. C. 1984. The Xiphosurida: archetypes of bradytely? Pp. 196213. In: Eldredge, N. and Stanley, S. M., eds. Living Fossils. Springer-Verlag; New York.Google Scholar
Fortey, R. A. 1983. Geometrical constraints in the construction of graptolite stipes. Paleobiology 9:116125.Google Scholar
Futuyma, D. J. 1979. Evolutionary Biology. Sinauer; Sunderland, Mass.Google Scholar
Gans, C. 1979. Momentarily excessive construction as the basis for protoadaptation. Evolution. 33:227233.Google Scholar
Gould, S. J. 1970. Evolutionary paleontology and the science of form. Earth-Science Reviews. 6:77119.Google Scholar
Gould, S. J. 1976. Darwin's untimely burial. Nat. Hist. 85:2430.Google Scholar
Gould, S.J. 1980a. The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology. 6:96118.Google Scholar
Gould, S. J. 1980b. Is a new and general theory of evolution emerging? Paleobiology. 6:119130.Google Scholar
Gould, S.J. 1980c. The evolutionary biology of constraint. Daedalus. 109:3952.Google Scholar
Gould, S. J. 1984. Covariance sets and ordered geographic variation in Cerion from Aruba, Bonaire and Curacao: a way of studying nonadaptation. Syst. Zool. 33:217237.Google Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. London. 205B:581598.Google Scholar
Gould, S. J. and Vrba, E. S. 1982. Exaptation—a missing term in the science of form. Paleobiology. 8:415.Google Scholar
Grant, R. E. 1975. Methods and conclusions in functional analysis: a reply. Lethaia. 8:3133.Google Scholar
Gutmann, W. F. 1977. Phylogenetic reconstruction: theory, methodology, and application to chordate evolution. Pp. 645669. In: Hecht, M. K., Goody, P. C., and Hecht, B. M., eds. Major Patterns in Vertebrate Evolution. Plenum; New York.Google Scholar
Gutmann, W. F., Vogel, K., and Zorn, H. 1978. Brachiopods: biomechanical interdependencies governing their origin and phytogeny. Science. 199:890893.Google Scholar
Hickman, C. S. 1980. Gastropod radulae and the assessment of form in evolutionary paleontology. Paleobiology. 6:276294.Google Scholar
Hoffman, A. 1983. Paleobiology at the crossroads: a critique of some modern paleobiological research programs. Pp. 241271. In: Grene, M., ed. Dimensions of Darwinism. Cambridge Univ. Press; Cambridge.Google Scholar
Hofstadter, D. R. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. Random House; New York.Google Scholar
Krimbas, C. B. 1984. On adaptation, neo-Darwinian tautology and population fitness. Evol. Biol. 17:157.Google Scholar
La Barbera, M. 1981. Water flow patterns in and around three species of articulate brachiopods. J. Exp. Mar. Biol. Ecol. 55:185206.Google Scholar
Lakatos, I. and Musgrave, A., eds. 1970. Criticism and the Growth of Knowledge. Cambridge Univ. Press; Cambridge.Google Scholar
Lauder, G. V. 1981. Form and function: structural analysis in evolutionary morphology. Paleobiology. 7:430442.Google Scholar
Lewontin, R. C. 1978. Adaptation. Sci. Amer. 239:213230.Google Scholar
Lewontin, R. C. 1980. Adaptation. The Encyclopedia Einaudi. Milan. Pp. 234251. Reprinted in: Sober, E., ed. Conceptual Issues in Evolutionary Biology. MIT Press; Cambridge, Mass.Google Scholar
Liem, K. F. 1973. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22:425441.Google Scholar
Maderson, P. F. A., Alberch, P., Goodwin, B. C., Gould, S. J., Hoffman, A., Murray, J. D., Raup, D. M., de Ricqles, A., Seilacher, A., Wagner, G. P., and Wake, D. B. 1982. The role of development in macroevolutionary change. Pp. 279312. In: Bonner, J. T., ed. Evolution and Development. Springer-Verlag; Heidelberg.Google Scholar
Mandelbrot, B. 1982. The Fractal Geometry of Nature. Freeman; Salt Lake City.Google Scholar
Maynard Smith, J. 1978. Optimization theory in evolution. Ann. Rev. Ecol. Syst. 9:3156.Google Scholar
Mayr, E. 1983. How to carry out the adaptationist program? Amer. Nat. 121:324334.Google Scholar
McGhee, G. R. Jr. 1978. Analysis of the shell torsion phenomenon in the Bivalvia. Lethaia. 11:315329.Google Scholar
McGhee, G. R. Jr. 1980. Shell form in the biconvex articulate Brachipoda: a geometric analysis. Paleobiology. 6:5776.Google Scholar
McKinney, F. K. and Raup, D. M. 1982. A turn in the right direction: simulation of erect spiral growth in the bryozoans Archimedes and Bugula. Paleobiology. 8:101112.Google Scholar
Mills, S. and Beatty, J. 1979. The propensity interpretation of fitness. Phil. Sci. 46:263286.Google Scholar
Mivart, St. G. 1871. On the Genesis of Species. MacMillan; London.Google Scholar
Oster, G. F. and Wilson, E. O. 1978. Caste and Ecology in the Social Insects. Princeton Univ. Press; Princeton.Google Scholar
Paul, C. R. C. 1975. A reappraisal of the paradigm method of functional analysis in fossils. Lethaia. 8:1521.Google Scholar
Peters, D. S. 1983. Evolutionary theory and its consequences for the concept of adaptation. Pp. 315327. In: Grene, M., ed. Dimensions of Darwinism. Cambridge Univ. Press; Cambridge.Google Scholar
Peters, R. H. 1976. Tautology in evolution and ecology. Amer. Nat. 110:112.Google Scholar
Platt, J. R. 1964. Strong inference. Science. 146:347353.Google Scholar
Quinn, J. F. and Dunham, A. E. 1983. On hypothesis testing in ecology and evolution. Amer. Nat. 122:602617.CrossRefGoogle Scholar
Raup, D. M. 1968. Theoretical morphology of echinoid growth. J. Paleontol. 42:5063.Google Scholar
Raup, D. M. 1972. Approaches to morphologic analysis. Pp. 2845. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper; San Francisco.Google Scholar
Raup, D. M. and Gould, S. J. 1974. Stochastic simulation and the evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23:305322.Google Scholar
Raup, D. M. and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science. 147:12941295.Google Scholar
Raup, D. M. and Stanley, S. M. 1978. Principles of Paleontology. Second edition. Freeman; San Francisco.Google Scholar
Reif, W.-E. 1975. Lenkende und limitierende Faktoren in der Evolution. Acta Biotheoretica. 24:136162.Google Scholar
Reif, W.-E. 1982. Functional morphology on the procrustean bed of the neutralism-selectionism debate. Notes on the constructional morphology approach. N. Jb. Geol. Paläont. Abh. 164:4659.Google Scholar
Riedl, R. 1978. Order in Living Organisms. Wiley; New York.Google Scholar
Rudwick, M. J. S. 1964. The inference of function from structure in fossils. Brit. J. for the Phil. Sci. 15:2740.CrossRefGoogle Scholar
Salmon, W. C. 1975. Confirmation and relevance. Minn. Stud. Phil. Sci. 6:336.Google Scholar
Saunders, W. B. and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonites in time and space. Paleobiology. 10:195228.Google Scholar
Schaffner, K. F. 1970. Outlines of a logic of comparative theory evaluation with special attention to pre- and post-relativistic electrodynamics. Minn. Stud. Phil. Sci. 5:311373.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia. 3:393396.Google Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. Syst. Zool. 22:451465.Google Scholar
Seilacher, A. 1979. Constructional morphology of sand dollars. Paleobiology. 5:191221.Google Scholar
Shaffer, H. B. and Lauder, G. V. 1985. Patterns of variation in aquatic ambystomatid salamanders: kinematics of the feeding mechanism. Evolution. 39:8392.Google Scholar
Signor, P. W. 1982a. A critical re-evaluation of the paradigm method of functional inference. N. Jb. Geol. Paläont. Abh. 164:5963.CrossRefGoogle Scholar
Signor, P. W. 1982b. Resolution of life habits using multiple morphologic criteria: shell form and life-mode in turritelliform gastropods. Paleobiology. 8:378388.Google Scholar
Signor, P. W. 1983. Burrowing and the functional significance of rachet sculpture in turritelliform gastropods. Malacologia. 23:313320.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia Univ. Press; New York.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press; New York.Google Scholar
Sober, E. 1984. The Nature of Selection. MIT Press; Cambridge, Mass.Google Scholar
Stanley, S. M. 1975. Why clams have the shape they have: an experimental analysis of burrowing. Paleobiology. 1:4858.Google Scholar
Stern, J. T. Jr. 1970. The meaning of “adaptation” and its relation to the phenomenon of natural selection. Evol. Biol. 4:3966.Google Scholar
Thomas, R. D. K. 1976. Constraints of ligament growth, form and function on evolution in the Arcoida (Mollusca: Bivalvia). Paleobiology. 2:6483.Google Scholar
Thomas, R. D. K. 1979. Constructional morphology. Pp. 482487. In: Fairbridge, R. W. and Jablonski, D., eds. Encyclopedia of Paleontology. Dowden, Hutchinson and Ross; Stroudsberg.Google Scholar
Vrba, E. S. 1983. Macoevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science. 221:387389.Google Scholar
Vrba, E. S. 1984a. Evolutionary pattern and process in the sister-group Alcelaphini-Aepycerotini (Mammalia: Bovidae). Pp. 6279. In: Eldredge, N. and Stanley, S. M., eds. Living Fossils. Springer-Verlag; New York.Google Scholar
Vrba, E. S. 1984b. Patterns in the fossil record and evolutionary processes. Pp. 115142. In: Ho, M.-W. and Saunders, P. T., eds. Beyond Neo-Darwinism. Academic Press; London.Google Scholar
Vrba, E. S. 1984c. What is species selection? Syst. Zool. 33:318328.Google Scholar
Vrba, E. S. and Eldredge, N. 1984. Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology. 10:146171.Google Scholar
Waddington, D. H. 1962. New Patterns in Genetics and Development. Columbia Univ. Press; New York.Google Scholar
Ward, P. 1980. Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautiloids. Paleobiology. 6:3243.Google Scholar
Williams, G. C. 1966. Adaptation and Natural Selection. Princeton Univ. Press; Princeton.Google Scholar
Wimsatt, W. C. 1972. Teleology and the logical structure of function statements. Stud. Hist. and Phil. Sci. 3:180.Google Scholar
Wimsatt, W. C. 1974. Complexity and organization. Boston Stud. Phil. Sci. 20:6786.Google Scholar
Wimsatt, W. C. 1980. Reductionistic research strategies and their biases in the units of selection controversy. Pp. 213–159. In: Nickles, T., ed. Scientific Discovery. D. Reidel; Dordrecht.Google Scholar
Winston, P. H. 1977. Artificial Intelligence. Addison-Wesley; Reading, Mass.Google Scholar
Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. Sixth Internat. Congr. Genetics. 1:356366.Google Scholar