Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T18:27:02.841Z Has data issue: false hasContentIssue false

Encrusting organisms on co-occurring disarticulated valves of two marine bivalves: comparison of living assemblages and skeletal residues

Published online by Cambridge University Press:  08 April 2016

Frank K. McKinney*
Affiliation:
Department of Geology, Appalachian State University, Boone, North Carolina 28608

Abstract

Study of the assemblage of encrusting organisms on co-occurring disarticulated valves of the bivalves Crassostrea virginica and Mercenaria mercenaria in Bogue Sound, North Carolina, indicates that there is little or no substrate specificity among the encrusting organisms but that the shape of the shells has an important influence on how extensively members of each higher taxon collectively inhabit the shells. Encrusting bryozoans, a dense low mat composed of many species from diverse phyla, and a unicellular film cover most of the area of both exterior and interior surfaces. The encrusting bryozoans most extensively cover both surfaces of C. virginica but are in second place behind the multispecies mat on exterior surfaces of M. mercenaria and behind the unicellular film on its interior surfaces. These differences are inferred to result from different physical stability of valves of the two bivalve species, which exhibit different frequencies of circumrotatory growth.

Degradation of the assemblage by sodium hypochlorite, to simulate loss of organic matter during fossilization, results in the complete loss of encrusting sponges, erect hydrozoans, erect bryozoans, and ascidians. Loss of these taxa results in overexposure and more apparently uniform distribution of skeletal taxa with respect to their surface representation in living assemblages and also in complete loss of the higher tiers present in the living assemblage. However, indications of the original structural organization of the living assemblage is indicated by preservation of the most abundant taxa in the lower tiers and by the retention in the reduced treated assemblage of the patterns of distribution that characterized the living assemblage.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. V. 1960. The epifauna of a Devonian spiriferid. Quarterly Journal of the Geological Society of London 117:110.Google Scholar
Alvarez, F., and Taylor, P. D. 1987. Epizoan ecology and interactions in the Devonian of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 61:1731.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats throughout the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bishop, J. D. D. 1988. Disarticulated bivalve shells as substrates for encrustation by the bryozoan Cribrilina puncturata in the Plio-Pleistocene Red Crag of eastern England. Palaeontology 31:237253.Google Scholar
Bottjer, D. J. 1982. Paleoecology of epizoans and borings on some Upper Cretaceous chalk oysters from the Gulf Coast. Lethaia 15:7584.Google Scholar
Brancato, M. S., and Woollacott, R. M. 1982. Effect of microbial films on settlement of bryozoan larvae (Bugula simplex, B. stolonifera andB. turrita). Marine Biology 71:5156.Google Scholar
Brice, D., and Mistiaen, B. 1992. Épizoaires des brachiopodes Frasniens de Ferques (Boulonnais, Nord de la France). Geobios 14:4558.Google Scholar
D'Hondt, J.-L. 1984. Bryozoaires épibiontes sur le brachiopode articulé Gryphus vitreus (Born, 1778) en mer Méditerranée occidentale (Corse). Vie et Milieu 34:2733.Google Scholar
Driscoll, E. G., and Swanson, R. A. 1973. Diversity and structure of epifaunal communities on mollusc valves, Buzzards Bay, Massachusetts. Palaeogeography, Palaeocolimatology, Palaeoecology 14:229247.CrossRefGoogle Scholar
Eggleston, D. 1972. Factors incluencing the distribution of sublittoral ectoprocts off the south of the Isle of Man (Irish Sea). Journal of Natural History 6:247260.Google Scholar
Glynn, P. W. 1974. Rolling stones among the Scleractinia: mobile coralliths in the Gulf of Panama. Proceedings of the Second International Coral Reef Symposium 2:183198. Brisbane, December 1974.Google Scholar
Grosberg, R. K. 1981. Competitive ability influences habitat choice in marine invertebrates. Nature 290:700702.Google Scholar
Gundrum, L. E. 1979. Demosponges as substrates: an example from the Pennsylvanian of North America. Lethaia 12:105119.Google Scholar
Harmelin, J.-G. 1977. Bryozoaires des Iles d'Hyéres: cryptofaune bryozoologique des valves vides de Pinna nobilis rencontrées dans les herbiers de Posidonies. Travaux scientifiques du Parc national de Port-Cros 3:143157.Google Scholar
Hary, A. 1987. Epifaune et endofaune de Liogryphaea arcuata (Lamarck). Travaux Scientifiques du Musée d'Histoire Naturelle de Luxembourg 10:179.Google Scholar
Hölder, H. 1972. Endo- und Epizoen im Belemniten-Rostren (Megateuthis) im nordwestdeutschen Bajocium (mittlerer Jura). Paläontologische Zeitschrift 46:199220.Google Scholar
Humphries, E. M. 1975. A new approach to resolving the question of speciation in smittinid bryozoans (Bryozoa: Cheilostomata). Documents des Laboratoires Géologie de la Faculté des Sciences de Lyon, Hors Série 3:1935.Google Scholar
Jackson, J. B. C. 1977. Competition on marine hard substrate: the adaptive significance of solitary and colonial strategies. The American Naturalist 111:743767.CrossRefGoogle Scholar
Kacha, P., and Saric, R. 1995. Bryozoans attached to exuvia of the Ordovician trilobite Dalmanitina (D.) proeva. Vestnik Ceského Geologického Ustavu 70(4):4346.Google Scholar
Keough, M. J., and Raimondi, P. R. 1995. Responses of settling invertebrate larvae to bioorganic films: effects of different types of films. Journal of Experimental Marine Biology and Ecology 185:235253.Google Scholar
Kirby-Smith, W. W., and Costlow, J. D. 1989. The Newport River estuarine system. UNC Sea Grant College Publication UNC-SG-89-04:158.Google Scholar
Kissling, D. L. 1973. Circumrotatory growth form in Recent and Silurian corals. pp. 4358In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr., eds. Animal colonies: development and function through time. Dowden, Hutchinson, and Ross, Stroudsburg, Pa.Google Scholar
Kobluk, D. R., and James, N. P. 1979. Cavity-dwelling organisms in Lower Cambrian patch reefs from southern Labrador. Lethaia 12:193218.Google Scholar
Lawrence, D. R. 1968. Taphonomy and information losses in fossil communities. Geological Society of America Bulletin 79:13151330.CrossRefGoogle Scholar
Lescinsky, H. L. 1993. Taphonomy and paleoecology of epibionts on the scallops Chlamys hastata (Sowerby, 1843) and Chlamys rubida (Hinds 1845). Palaios 8:267277.Google Scholar
Lewis, J. B. 1989. Spherical growth in the Caribbean coral Siderastrea radians (Pallas) and its survival in disturbed habitats. Coral Reefs 7:161167.CrossRefGoogle Scholar
Liddell, W. D., and Brett, C. E. 1982. Skeletal overgrowths among epizoans from the Silurian (Wenlockian) Waldron Shale. Paleobiology 8:6778.CrossRefGoogle Scholar
Maki, J. S., Tirrschof, E., Schmidt, A. R., Snyder, A. G., and Mitchell, R. 1989. Factors controlling attachment of bryozoan larvae: a comparison of bacterial films and unfilmed surfaces. Biological Bulletin 177:295302.Google Scholar
Martindale, W. 1992. Calcified epibionts as palaeoecological tools: examples from the Recent and Pleistocene reefs of Barbados. Coral Reefs 11:167177.Google Scholar
Maturo, F. J. S. 1959. Seasonal distribution and settling rates of estuarine Bryozoa. Ecology 40:116127.CrossRefGoogle Scholar
Mayoral, E., and Reguant, S. 1995. Palaeoecology and taphonomy of bivalves, mainly Glycymeris insubrica (Brocchi), and bryozoans from the Huelva Sands Fm. (lower Pliocene, SW Spain). Revista Española de Paleontología, N.° Homenaje al Dr. Guillermo Colom:3147.Google Scholar
Mayoral, E., and Sequeiros, L. 1979. Significado paleoecológico de algunos epizoos y “borers” del Jurásico inferior y midio de Belchite (Zaragoza, Cordillera Ibérica). Cuaderhos de Geología 10:121135.Google Scholar
McDougall, K. D. 1943. Sessile marine invertebrates of Beaufort, North Carolina. Ecological Monographs 13:321374.Google Scholar
McKinney, F. K., and McKinney, M. J. 1993. Larval behaviour and choice of settlement site: correlation with environmental distribution pattern in an erect bryozoan. Facies 29:119132.Google Scholar
McKinney, F. K., and McKinney, M. J. 1994. Preferences for settlement conditions by larvae of Schizotheca serratimargo (Hincks, 1886), an erect bryozoan from protected habitats. pp. 119124In Hayward, P. J., Ryland, J. S., and Taylor, P. D., eds. Biology and palaeobiology of bryozoans. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Mihm, J. E., Banta, W. C., and Loeb, G. I. 1981. Effects of adsorbed organic and primary fouling films on bryozoan settlement. Journal of Experimental Marine Biology and Ecology 54:167179.Google Scholar
Miller, M. A., Rapean, J. E., and Wheedon, W. F. 1948. The role of slime film in the attachment of fouling organisms. Biological Bulletin 94:143157.Google Scholar
Miller, W. III, and Alvis, L. M. 1986. Temporal change as an apsect of biogenic shell utilization and damage, Pleistocene of North Carolina, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology 56:197215.Google Scholar
Mitchell, R., and Maki, J. S. 1988. Microbial surface films and their influence on larval settlement and metamorphosis in the marine environment. pp. 489497In Thompson, M.-F., Sarojini, R., and Nagabhushanam, R., eds. Marine biodeterioration. Advanced techniques applicable to the Indian Ocean. Balkema, Rotterdam.Google Scholar
Nair, PS. R. 1991. Occurrence of bryozoa in Vellar estuarine region, south east coast of India. Indian Journal of Marine Sciences 20:277279.Google Scholar
Newell, N. D. 1959. The nature of the fossil record. Proceedings of the American Philosophical Society 103:6575.Google Scholar
Nishizawa, Y. 1985. Multilaminar colonies of bryozoans from Japan. I. “Ectoproctalith” of Antropora tincta (Hastings). Transactions and Proceedings of the Palaeontological Society of Japan, n. s. 137:1924.Google Scholar
Pomerat, C. M., and Reiner, E. R. 1942. The influence of surface angle and of light on the attachment of barnacles and other sedentary organisms. Biological Bulletin 82:1425.Google Scholar
Pugaczewska, H. 1965. Les organismes sédentaires sur les rostres des bélemnites du crétace supérieur. Acta Palaeontologica Polonica 10:7395.Google Scholar
Pugaczewska, H. 1970. Traces of the activity of bottom organisms on the shells of the Jurassic ostreiform pelecypods of Poland. Acta Palaeontologica Polonica 15:425440.Google Scholar
Rasmussen, K. A., and Brett, C. E. 1985. Taphonomy of Holocene cryptic biotas from St. Croix, Virgin Islands: information loss and preservational biases. Geology 13:551553.Google Scholar
Rider, J., and Enrico, R. 1979. Structural and functional adaptations of mobile anascan ectoproct colonies (ectoproctaliths). pp. 297320In Larwood, G. P. and Abbott, M. B., eds. Advances in bryozoology. Academic Press, London.Google Scholar
Rowland, S. M., and Gangloff, R. A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios 3:111135.Google Scholar
Schopf, T. J. M. 1978. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology 4:261270.Google Scholar
Sequeiros, L., and Mayoral, E. 1980. Epizoos y perforantes sobre Plagiostoma gigantea (SOW.), Bivalvia (Jurásico inferior); un modelo de relaciones entre paleoecología y diagénesis. Revista del Instituto de Investigaciones Geológicas Diputación Provincial Universidad de Barcelona 34:149159.Google Scholar
Sutherland, J. P. 1977. Effect of Schizoporella (Ectoprocta) removal on the fouling community at Beaufort, North Carolina, USA. pp. 155176in Coull, B. C., ed. Ecology of marine benthos. University of South Carolina Press, Columbia.Google Scholar
Sutherland, J. P. 1978. Functional roles of Schizoporella and Styela in the fouling community at Beaufort, North Carolina. Ecology 59:257264.Google Scholar
Sutherland, J. P., and Karlson, R. H. 1977. Development and stability of the fouling community at Beaufort, North Carolina. Ecological Monographs 47:425446.Google Scholar
Taylor, P. D. 1979. Palaeoecology of the encrusting epifauna of some British Jurassic bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 28:241262.Google Scholar
Taylor, P. D. 1984. Adaptations for spatial competition and utilization in Silurian encrusting bryozoans. Special Papers in Palaeontology 32:197210.Google Scholar
Taylor, P. D., and Michalik, J. 1991. Cyclostome bryozoans from the Late Triassic (Rhaetian) of the West Carpathians, Czechoslovakia. Neues Jahrbuch for Geologie und Paläontologie Abhandlungen 182:285302.Google Scholar
Thayer, C. W. 1974. Substrate specificity of Devonian epizoa. Journal of Paleontology 48:881894.Google Scholar
Thomsen, E. 1977. Relations between encrusting bryozoans and substrate: an example from the Danian of Denmark. Bulletin of the Geological Society of Denmark 26:133145.CrossRefGoogle Scholar
Todd, C. D., and Keough, M. J. 1994. Larval settlement in hard substratum epifaunal assemblages: a manipulative field study of the effects of substratum filming and the presence of incumbents. Journal of Experimental Marine Biology and Ecology 181:159187.Google Scholar
Turek, V. 1987. On some epizoans of mollusc shells from the Upper Silurian (Pridoli) of the Barrandian area. Vestnik Ustredniho Ustavu Geologickeho 62:105111.Google Scholar
Walters, L. J. 1992a. Post-settlement success of the arborescent bryozoan Bugula neritina (L.): the importance of structural complexity. Journal of Experimental Marine Biology and Ecology 164:5571.Google Scholar
Walters, L. J. 1992b. Field settlement locations on subtidal marine hard substrata: is active larval exploration involved? Limnology and Oceanography 37:11011107.Google Scholar
Walters, L. J., and Wethey, D. S. 1991. Settlement, refuges, and adult body form in colonial marine invertebrates: a field experiment. Biological Bulletin 180:112118.CrossRefGoogle ScholarPubMed
Ward, M. A., and Thorpe, J. P. 1989. Assessment of space utilisation in a subtidal temperate bryozoan community. Marine Biology 103:215224.Google Scholar
Ward, M. A., and Thorpe, J. P. 1991. Distribution of encrusting bryozoans and other epifauna on the subtidal bivalve Chlamys opercularis. Marine Biology 110:253259.Google Scholar
Zabala, M., Maluquer, P., and Harmelin, J.-G. 1993. Epibiotic bryozoans on deep-water scleractinian corals from the Catalonia slope (western Mediterranean, Spain, France). Scientia Marina 57:6578.Google Scholar