Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T05:23:48.021Z Has data issue: false hasContentIssue false

The ecology of invasion: acquisition and loss of the siphonal canal in gastropods

Published online by Cambridge University Press:  20 May 2016

Geerat J. Vermeij*
Affiliation:
Department of Geology, University of California at Davis, One Shields Avenue, Davis, California 95616. E-mail: [email protected]

Abstract

Most evolutionary innovations—power-enhancing phenotypes previously absent in a lineage—have arisen multiple times within major clades. This repetition permits a comparative approach to ask how, where, when, in which clades, and under which circumstances adaptive innovations are acquired and secondarily lost. I use new and literature-based data on the phylogeny, functional morphology, and fossil record of gastropods to explore the acquisition and loss of the siphonal canal and its variations in gastropods. The siphonal indentation, canal, notch, or tube at the front end of the shell is associated in living gastropods with organs that detect chemical signals directionally and at a distance in an anteriorly restricted inhalant stream of water.

Conservative estimates indicate that the siphonate condition arose 23 times and was secondarily lost 17 times. Four siphonate clades have undergone prodigious diversification. All siphonate gastropods have a shell whose axis of coiling lies at a low angle above the plane of the aperture (retroaxial condition). In early gastropods, the siphonal canal was short and more or less confined to the apertural plane. Later (mainly Cretaceous and Cenozoic) variations include a dorsally deflected canal, a long canal, and a closed canal. The closed siphonal canal, in which the edges join to form a tube, arose 15 times, all in the adult stages of caenogastropods with determinate growth.

Gastropods in which the siphonate condition arose were mobile, bottom-dwelling, microphagous animals. Active predaceous habits became associated with the siphonate condition in the Mesozoic and Cenozoic Purpurinidae-Latrogastropoda clade. Loss of the siphonate condition is associated with nonmarine habits, miniaturization, and especially with a sedentary or slow-moving mode of life.

The siphonate condition arose seven times each during the early to middle Paleozoic, the late Paleozoic, and the early to middle Mesozoic, and only once each during the Late Cretaceous and Cenozoic. Well-adapted incumbents prevented most post-Jurassic clades from evolving a siphonal indentation and its associated organs. Dorsally deflected, long, and closed canals are known only from Cretaceous and Cenozoic marine gastropods, and represent improvements in sensation and passive armor.

In a discussion of contrasting ecologies of clades that gained and lost the siphonate condition, I argue that macroevolutionary trends in the comings and goings of innovations and clades must incorporate ecological and functional data. Acquisitions of energy-intensive, complex innovations that yield greater power have a greater effect on ecosystems, communities, and their resident clades than do reversals, which generally reflect energy savings.

Type
Articles
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbass, H. L. 1973. Some British Cretaceous gastropods belonging to the families Procerithiidae, Cerithiidae and Cerithiopsidae (Cerithiacea). Bulletin of the British Museum of Natural History (Geology) 23: 1175.Google Scholar
Amano, K. and Vermeij, G. J. 1998a. Origin and biogeographic history of (Gastropoda: Muricidae). Venus 57: 209223.Google Scholar
Amano, K. and Vermeij, G. J. 1998b. Taxonomy and evolution of the genus (Gastropoda: Muricidae) in Japan. Paleontological Research 2: 199212.Google Scholar
Bandel, K. 1991a. Über Triassischen “Loxonematoidea” und ihre Beziehungen zu rezenten und Paläozoischen Schnecken. Paläontologische Zeitschrift 65: 239268.Google Scholar
Bandel, K. 1991b. Gastropods from brackish and fresh water of the Jurassic-Cretaceous transition (a systematic reevaluation). Berliner Geowissenschaftliche Abhandlungen E 134: 955.Google Scholar
Bandel, K. 1992. Über Caenogastropoda der Cassianer Schichten (Obertrias) der Dolomiten (Italien) und ihre taxonomische Bewertung. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 73: 3797.Google Scholar
Bandel, K. 1993. Caenogastropoda during Mesozoic times. Scripta Geologica Special Issue 2: 756.Google Scholar
Bandel, K. 1994. Triassic Euthyneura (Gastropoda) from St. Cassian Formation (Italian Alps) with a discussion on the evolution of the Heterostropha. Freiberger Forschungshefte C 452: 7999.Google Scholar
Bandel, K. 2002a. About the Heterostropha (Gastropoda) from the Carboniferous and Permian. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 86: 4580.Google Scholar
Bandel, K. 2002b. Reevaluation and classification of Carboniferous and Permian Gastropoda belonging to the Caenogastropoda and their relation. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 86: 81188.Google Scholar
Bandel, K. and Dockery, D. T. III. 2001. The Sarganidae (Pyrofusoidea, Latrogastropoda), their taxonomy and paleobiogeography. Journal of the Czech Geological Society 46: 335351.Google Scholar
Bandel, K. and Kiel, S. 2000. Earliest known (Campanian) members of the Vermetidae, Provanidae and Litiopidae (Cerithioidea, Gastropoda), and a discussion of their possible relationships. Mitteilungen des Geologisch-Paläontologischen Institut der Universität Hamburg 84: 209218.Google Scholar
Bandel, K. and Kowalke, T. 1997a. Cretaceous and a discussion on the morphology of vermetids and turritellids (Caenogastropoda: Mollusca). Geologica et Palaeontologica 31: 257274.Google Scholar
Bandel, K. and Kowalke, T. 1997b. Systematic value of the larval shell of fossil and modern Vanikoridae, Pickworthiidae and the genus (Caenogastropoda, Mollusca). Berliner Geowissenschaftliche Abhandlungen E 25: 329.Google Scholar
Bandel, K. and Riedel, F. 1994. Classification of fossil and Recent Calyptraeoidea (Caenogastropoda) with a discussion on neomesogastropod phylogeny. Berliner Geowissenschaftliche Abhandlungen E 13: 329367.Google Scholar
Bandel, K., Nützel, A., and Yancey, T. E. 2002. Larval shells and shell microstructures of exceptionally well-preserved Late Carboniferous gastropods from the Buckhorn Asphalt deposit (Oklahoma, USA). Senckenbergiana Lethaea 82: 639689.Google Scholar
Batten, R. L. 1985. Permian gastropods from Perak, Malaysia, Part 3. The murchisoniids, cerithiids, loxonematids, and subulitids. American Museum Novitates 2829: 140.Google Scholar
Batten, R. L. and Stokes, W. L. 1986. Early Triassic gastropods from the Sinbad Member of the Moenkopi Formation, San Rafael Swell, Utah. American Museum Novitates 2864: 133.Google Scholar
Beu, A. G. 2004. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand, Part 1. Revised generic positions and recognition of warm-water and cool-water migrants. With an appendix: Age and correlation of Ototoka Tephra, B. V. Alloway, B. J. Pillans, J. R. Naish, and J. A. Westgate. Journal of the Royal Society of New Zealand 34: 111265.Google Scholar
Bieler, R. 1995. Mathildidae from New Caledonia and the Loyalty Islands (Gastropoda: Heterobranchia). Mémoires du Muséum National d'Histoire Naturelle 167: 595641.Google Scholar
Boss, K. J. and Jacobson, M. K. 1973. Monograph of the genus in Cuba (Mollusca: Prosobranchia: Helicinidae). Bulletin of the Museum of Comparative Zoology of Harvard University 145: 311358.Google Scholar
Bouchet, P. and Vermeij, G. J. 1998. Two new deep-water Pseudolividae (Neogastropoda) from the south-west Pacific. Nautilus 111: 4752.Google Scholar
Bouchet, P. and Warén, A. 1991. , nouveau gastéropode d'évents hydrothermaux, probablement symbiotiques. Comptes Rendus de l'Académie des Sciences de Paris, série 3 312: 495501.Google Scholar
Brunet, R. F J. 1997. New species of Mollusca from the Entreriense Formation (upper Miocene) of Chubut Province, Argentina and species not previously reported from this formation, Part II. Gastropoda. Tulane Studies in Geology and Paleontology 30: 6198.Google Scholar
Burger, A. W. and Kronenberg, G. C. 2006. The occurrence of Cossmann, 1889 (Gastropoda; Strombidae) in New Zealand, with the description of two new Eocene species. Molluscan Research 26: 7783.Google Scholar
Campbell, K. S W. 1977. Trilobites of the Haragan, Bois d'Arc and Frisco Formations (Early Devonian), Arbuckle Mountains region, Oklahoma. Oklahoma Geological Survey Bulletin 123: 1227.Google Scholar
Carroll, S. B. 2005. Endless forms most beautiful: the new science of evo devo and the making of the animal kingdom. Norton, New York.Google Scholar
Cernohorsky, W. O. 1981a. The taxonomy of some Indo-Pacific Mollusca, Part 9. Records of the Auckland Institute and Museum 18: 193202.Google Scholar
Cernohorsky, W. O. 1981b. The family Buccinidae, Part I. The genera , and . Monographs of Marine Mollusca No 2: 201284.Google Scholar
Chavan, A. 1947. La faune Campanienne du Mont des Oliviers d'après des matériaux Vignal-Massé. Journal de Conchyliologie 87: 125197.Google Scholar
Citerne, H. L., Pennington, R. T., and Cronk, Q. C. 2006. An apparent reversal in floral symmetry in the legume is a homeotic transformation. Proceedings of the National Academy of Sciences USA 103: 1201712020.Google Scholar
Collin, R. 2003. The utility of morphological characters in gastropod phylogenetics: an example from the Calyptraeidae. Biological Journal of the Linnean Society 78: 541593.Google Scholar
Cossmann, M. 1897. Mollusques éocèniques de la Loire inférieure, Troisième fascicule. Bulletin de la Société des Sciences Naturelle de l'Ouest de la France 7: 297358.Google Scholar
Cossmann, M. and Peyrot, M. A. 1924. Conchologie Néogénique de l'Aquitaine. Actes de la Société Linnéenne de Bordeaux 75/ 2: 71144.Google Scholar
Darragh, T. A. 1991. A revision of the Australian genus Harris, 1897 (Gastropoda: Struthiolariidae). Alcheringa 15: 151175.Google Scholar
D'Attilio, A. and Hertz, C. M. 1988. An illustrated catalogue of the family Typhidae Cossmann, 1903. Festivus 20: (Suppl.). 173.Google Scholar
DeVries, T. J. 2005. Late Cenozoic Muricidae from Peru: seven new species and a biogeographic summary. Veliger 47: 277293.Google Scholar
Dockery, D. T. III. 1993. The streptoneuran gastropods, exclusive of the Stenoglossa, of the Coffee Sand (Campanian) of northeastern Mississippi. Mississippi Department of Environmental Quality, Office of Geology, Bulletin 129: 1191.Google Scholar
Duda, T. F. Jr. and Kohn, A. J. 2005. Species-level phylogeography and evolutionary history of the hyperdiverse marine gastropod genus Conus. Molecular Phylogenetics and Evolution 34: 257272.Google Scholar
Dudley, R. 2000. The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton, N.J.Google Scholar
Emerson, W. K. and D'Attilio, A. 1969. Remarks on the taxonomic placement of Jousseaume, 1880, with the description of a new species (Gastropoda: Muricidae). Veliger 12: 145148.Google Scholar
Ferner, M. C. and Weissburg, M. J. 2005. Slow-moving predatory gastropods track prey odors in fast and turbulent flow. Journal of Experimental Biology 208: 809819.Google Scholar
Frýda, J. 1999. Shape convergence in gastropod shells: an example from the Early Devonian ()- community of the Prague Basin (Bohemia). Mitteilungen aus dem Geologisch-Paläontologischen Institut, Universität von Hamburg 83: 179190.Google Scholar
Frýda, J. 2001. Discovery of a larval shell in Middle Paleozoic subulitoidean gastropods with description of two new species from the Early Devonian of Bohemia. Bulletin of the Czech Geological Survey 76: 2938.Google Scholar
Frýda, J. and Bandel, K. 1997. New Early Devonian gastropods from the Plectonotus ()- community in the Prague Basin (Bohemia). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 80: 157.Google Scholar
Frýda, J. and Blodgett, R. B. 2001. The oldest known heterobranch gastropod, gen. nov., from the Early Devonian of west-central Alaska, with notes on the early phylogeny of higher gastropods. Bulletin of the Czech Geological Survey 76: 3954.Google Scholar
Galis, F., van Alphen, J. J M., and Metz, J. A J. 2001. Why five fingers? Evolutionary constraints on digit numbers. Trends in Ecology and Evolution 16: 637646.Google Scholar
Gladenkov, YuB. and Sinelnikova, V. N. 1990. Miocene mollusks and climatic optima in Kamchatka. Academy of Sciences of the USSR Order of the Red Banner of Labour Geological Institute Transactions 453: 1172.Google Scholar
Glaubrecht, M. 1999. Systematics and the evolution of viviparity in tropical freshwater gastropods (Cerithioidea: Thiaridae sensu lato)—an overview. Courier Forschungs-Institut Senckenberg 215: 9196.Google Scholar
Golikov, A. N. 1986. The gastropod family Trichotropidae in the temperate and cold waters of the northern hemisphere. USSR Academy of Sciences Proceedings of the Zoological Institute 152: 1129.Google Scholar
Golikov, A. N. and Gulbin, V. V. 1990. On the system of the family Velutinidae Gray, 1842 (Gastropoda). USSR Academy of Sciences, Proceedings of the Zoological Institute, Leningrad 218: 109129.Google Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Graham, A. 1954. Anatomy of the prosobranch Broderip and Sowerby, and the systematic position of the Capulidae. Journal of the Marine Biological Association of the United Kingdom 33: 129144.Google Scholar
Gründel, J. 2001. Neritimorpha und weitere Caenogastropoda (Gastropoda) aus dem Dogger Norddeutschlands und des nordwestlichen Polens. Berliner Geowissenschaftliche Abhandlungen E 36: 4599.Google Scholar
Gründel, J. and Kowalke, T. 2002. Palaeorissoinidae, a new family of marine and brackish water Rissooidea (Gastropoda, Littorinimorpha). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 226: 4357.Google Scholar
Gründel, J. and Nützel, A. 1998. Gastropoden aus dem oberen Pliensbachium (Lias d2, Zone des ) von Kalchreuth, östlich Erlangen (Mittelfranken). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 38: 6396.Google Scholar
Habe, T. 1962. Trichotropidae in Japan (Mollusca). Bulletin of the National Science Museum (Tokyo) 6/ 2: 6777.Google Scholar
Harasewych, M. G. and Petit, R. E. 1982. Notes on the morphology of (Gastropoda: Cancellariidae). Nautilus 96: 104113.Google Scholar
Harasewych, M. G. and Petit, R. E. 1986. Notes on the morphology of (Gastropoda: Cancellariidae). Nautilus 100: 8591.Google Scholar
Harasewych, M. G., Adamkewicz, S. L., Plassmeyer, M., and Gillevet, P. M. 1998. Phylogenetic relationships of the lower Caenogastropoda (Mollusca, Gastropoda, Architaenioglossa, Campaniloidea, Cerithioidea) as determined by partial 18S rDNA sequences. Zoologica Scripta 27: 361372.Google Scholar
Harzhauser, M. and Kowalke, T. 2001. Early Miocene brackish-water Mollusca from the eastern Mediterranean and from the central Paratethys—a faunistic and ecological comparison by selected faunas. Journal of the Czech Geological Society 46: 353374.Google Scholar
Harzhauser, M. and Kowalke, T. 2004. Survey of nassariid gastropods in the Neogene Paratethys (Mollusca: Caenogastropoda: Buccinoidea). Archiv für Molluskenkunde 133: 163.Google Scholar
Healy, J. M. 1993. Transfer of the gastropod family Plesiotrochidae to the Campaniloidea based on sperm ultrastructural evidence. Journal of Molluscan Studies 59: 135146.Google Scholar
Heidelberger, D. and Koch, L. 2005. Gastropoda from the Givetian “Massenkalk” of Schwelm and Hohenlimburg (Sauerland, Rheinisches Schiefergebirge, Germany). Geologica et Palaeontologica, Sonderband 4: 1107.Google Scholar
Hoerle, S. E. 1972. Cerithiidae and Potamididae (Mollusca: Gastropoda) from the Chipola Formation of northwestern Florida. Tulane Studies in Geology and Paleontology 10: 122.Google Scholar
Hopson, J. A. 1973. Endothermy, small size, and the origin of mammalian reproduction. American Naturalist 107: 446452.Google Scholar
Houart, R. 1991. Description of four new species of Muricidae from southern Africa with range extensions and a review of the subgenus Jousseaume, 1880 (Ocenebrinae). Apex 6: 5976.Google Scholar
Houart, R. 1996. Description of new species of Muricidae (Gastropoda) from New Caledonia, the Philippine Islands, the northeast Atlantic, and West Africa. Apex 11: 5975.Google Scholar
Houbrick, R. S. 1978. The family Cerithiidae in the Indo-Pacific. Part 1: the genera , and . Monographs of Marine Mollusca 1: 1130.Google Scholar
Houbrick, R. S. 1979. Classification and systematic relationships of the Abyssochrysidae, a relict family of bathyal snails (Prosobranchia: Gastropoda). Smithsonian Contributions to Zoology 290: 121.Google Scholar
Houbrick, R. S. 1980. Observations on the anatomy and life history of (Prosobranchia: Modulidae). Malacologia 20: 117142.Google Scholar
Houbrick, R. S. 1981a. Anatomy, biology and systematics of with reference to adaptive radiation of the Cerithiacea (Gastropoda: Prosobranchia). Malacologia 21: 263289.Google Scholar
Houbrick, R. S. 1981b. Anatomy and systematics of (Prosobranchia: Cerithiidae), a Tethyan relict from the southwest Pacific. Nautilus 95: 211.Google Scholar
Houbrick, R. S. 1988. Cerithioidean phylogeny. Malacological Reviews 4: (Suppl.). 88128.Google Scholar
Houbrick, R. S. 1989. Campanile revisited: implications for cerithioidean phylogeny. American Malacological Bulletin 7: 16.Google Scholar
Houbrick, R. S. 1990a. Anatomy, reproductive biology and systematic position of (Linné) (Fossarinae: Planaxidae; Prosobranchia). Açoreana for 1990: (Suppl.). 5973.Google Scholar
Houbrick, R. S. 1990b. Aspects of the anatomy of (Plesiotrochidae, fam.n.) and its systematic position in Cerithioidea (Prosobranchia, Caenogastropoda). pp. 237249in Wells, F. E., Walker, D. I., Kirkman, H., and Lethbridge, R., eds. Proceedings of the third international marine biological workshop: the marine flora and fauna of Albany, Western Australia. Western Australian Museum, Perth.Google Scholar
Houbrick, R. S. 1991a. Anatomy and systematic placement of Montfort 1810 (Prosobranchia: Melanopsinae). Malacological Reviews 24: 3554.Google Scholar
Houbrick, R. S. 1991b. Systematic review and functional morphology of the mangrove snails and (Potamididae; Prosobranchia). Malacologia 33: 289338.Google Scholar
Houbrick, R. S. 1993. Phylogenetic relationships and generic review of the Bittiinae (Prosobranchia: Cerithioidea). Malacologia 35: 261313.Google Scholar
Iredale, T. 1917. On some new species of marine Mollusca from Christmas Island, Indian Ocean. Proceedings of the Malacological Society of London 12: 331334.Google Scholar
Iyengar, E. V. 2002. Sneaky snails and wasted worms: cleptoparasitism by (Mollusca, Gastropoda) on (Annelida, polychaeta). Marine Ecology Progress Series 244: 153162.Google Scholar
Iyengar, E. V. 2005. Seasonal feeding-mode changes in the marine facultative cleptoparasite (Gastropoda, Capulidae): trade-offs between trophic strategy and reproduction. Canadian Journal of Zoology 83: 10971111.Google Scholar
Janis, C. M. and Keller, J. C. 2001. Modes of ventilation in early tetrapods: costal aspiration as a key feature of amniotes. Acta Palaeontologica Polonica 46: 136170.Google Scholar
Kaim, A. 2004. The evolution of conch ontogeny in Mesozoic open sea gastropods. Palaeontologica Polonica 62: 1183.Google Scholar
Kantor, YuI. 1990. Anatomical basis for the origin and evolution of the toxoglossan mode of feeding. Malacologia 32: 318.Google Scholar
Kantor, YuI. 1996. Phylogeny and relationships of Neogastropoda. pp. 221230in Taylor, J. D., ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Kantor, YuI. and Kilburn, R. N. 2001. Rediscovery of Wattebled, 1886, with discussion of its systematic position (Gastropoda: Neogastropoda: Nassariidae: Nassodonta). Nautilus 115: 99104.Google Scholar
Kase, T. and Ishikawa, M. 2003. Mystery of naticid predation history solved: evidence from a “living fossil” species. Geology 31: 403406.Google Scholar
Kiel, S. and Bandel, K. 1999. The Pugnellidae, a new stromboidean family (Gastropoda) from the upper Cretaceous. Paläontologische Zeitschrift 73: 4758.Google Scholar
Kiel, S. and Bandel, K. 2002. About some aporrhaid and strombid gastropods from the late Cretaceous. Paläontologische Zeitschrift 76: 8396.Google Scholar
Kiel, S. and Bandel, K. 2003. New taxonomic data for the gastropod fauna of the Umzamba Formation (Santonian-Campanian, South Africa) based on newly collected material. Cretaceous Research 24: 449475.Google Scholar
Kiel, S., Bandel, K., Banjac, N., and del Carmen Perrilliat, M. 2000. On Cretaceous Campanilidae (Caenogastropoda, Mollusca). Freiberger Forschungshefte C 49: 1526.Google Scholar
Kirschner, M. and Gerhart, J. 1998. Evolvability. Proceedings of the National Academy of Sciences USA 95: 84208427.Google Scholar
Kirschner, M. and Gerhart, J. 2005. The plausibility of life: resolving Darwin's dilemma. Yale University Press, New Haven, Conn.Google Scholar
Köhler, F., von Rintelen, T., Meyer, A., and Glaubrecht, M. 2004. Multiple origin of viviparity in southeast Asian gastropods (Cerithioidea: Pachychilidae) and its evolutionary implications. Evolution 58: 22152226.Google Scholar
Kohlsdorf, T. and Wagner, G. P. 2006. Evidence for the reversibility of digit loss: a phylogenetic study of limb evolution in (Gymnophthalmidae: Squamata). Evolution 60: 18971912.Google Scholar
Kollmann, H. A. 1976. Gastropoden aus den Losensteiner Schichten der Umgebung von Losenstein (Oberösterreich). I: Euthyneura und Prosobranchia (1 Neogastropoda). Annalen des Naturhistorischen Museums Wien 80: 163206.Google Scholar
Kollmann, H. A. 2005. Révision critique de la Paléontologie française d'Alcide d'Orbigny. Vol. III. Gastropodes crétacés. Backhuys, Leiden.Google Scholar
Kosuge, S. 1966. The family Triphoridae and its systematic position. Malacologia 4: 297324.Google Scholar
Kowalke, T. 2001. Cerithioidea (Caenogastropoda: Cerithiimorpha) of Tethyan coastal swamps and their relation to modern mangal communities. Bulletin of the Czech Geological Survey 76: 253271.Google Scholar
Le Renard, J. and Bouchet, P. 2003. New species and genera of the family Pickworthiidae (Mollusca, Caenogastropoda). Zoosystema 25: 569591.Google Scholar
Lindberg, D. R. and Ponder, W. F. 2001. The influence of classification on the evolutionary interpretation of structure—a re-evaluation of the evolution of the pallial cavity of gastropod molluscs. Organisms, Diversity, and Evolution 1: 273299.Google Scholar
Linsley, R. M. 1968. Gastropods of the Middle Devonian Anderdon Limestone. Bulletins of American Paleontology 54: 333465.Google Scholar
Linsley, R. M. 1977. Some “laws” of gastropod shell form. Paleobiology 3: 196206.Google Scholar
Linsley, R. M. 1978a. Locomotion rates and shell form in the Gastropoda. Malacologia 17: 193206.Google Scholar
Linsley, R. M. 1978b. The Omphalocirridae: a new family of Palaeozoic Gastropoda which exhibits sexual dimorphism. Memoirs of the National Museum of Victoria 39: 3354.Google Scholar
Lozouet, P. 1998. Nouvelles espèces de gastéropodes (Mollusca: Gastropoda) de l'Oligocène et du Miocène inférieur de l'Aquitaine (sud-ouest de la France). Cossmanniana 5: 61102.Google Scholar
Lozouet, P. and Le Renard, P. 1998. Les Coralliophilidae, Gastropoda de l'Oligocène et du Miocène inférieur de l'Aquitaine (sud-ouest de la France): systématique et coraux hôtes. Geobios 31: 171184.Google Scholar
Lozouet, P. and Maestrati, P. 1994. Les Planaxidae (Gastropoda, Cerithioidea) du Cénozoïque Européen: phylogénie, biostratigraphie et biogéographie. Annales de Paléontologie 80: 165193.Google Scholar
Lydeard, C. L., Hölznagel, W. E., Glaubrecht, M., and Ponder, W. F. 2002. Molecular phylogeny of a circum-global, diverse gastropod superfamily (Cerithioidea: Mollusca: Caenogastropoda): pushing the deepest phylogenetic limits of mitochondrial LSU rDNA sequences. Molecular Phylogenetics and Evolution 22: 399406.Google Scholar
Mansfield, W. C. 1937. Mollusks of the Tampa and Suwannee Limestones of Florida. State of Florida, Department of Conservation, Geological Bulletin 15: 1334.Google Scholar
Marko, P. B. and Vermeij, G. J. 1999. Molecular phylogenetics and the evolution of labral spines among eastern Pacific ocenebrine gastropods. Molecular Phylogenetics and Evolution 13: 275288.Google Scholar
Marshall, B. A. 1977. The Recent New Zealand species of (Gastropoda: Triphoridae). New Zealand Journal of Zoology 4: 101110.Google Scholar
Marshall, B. A. 1983. A revision of the Recent Triphoridae of southern Australia (Mollusca: Gastropoda). Records of the Australian Museum 2: (Suppl.). 1116.Google Scholar
Matsukuma, A. 1977. Notes on (Kuroda, 1953) (Prosobranchia: Neogastropoda). Venus 36: 8188.Google Scholar
Matsukuma, A. 1978. Fossil boreholes made by shell-boring predators or commensals. 1. Boreholes of capulid gastropods. Venus 37: 2945.Google Scholar
McLean, J. H. 1995. Four new genera for northeastern Pacific prosobranch gastropods. Nautilus 108: 3941.Google Scholar
McNab, B. K. 1994. Energy conservation and the evolution of flightlessness in birds. American Naturalist 144: 628642.Google Scholar
McShea, D. W. 1996. Metazoan complexity and evolution: is there a trend? Evolution 50: 477492.Google Scholar
McShea, D. W. 2002. A complexity drain on cells in the evolution of multicellularity. Evolution 56: 441452.Google Scholar
McShea, D. W. 2005. The evolution of complexity without natural selection: possible large-scale trend of the fourth kind. In Vrba, E. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency. Paleobiology 31: (Suppl. to No. 2). 146156.Google Scholar
Merle, J. 2002. , a new genus of Muricidae (Gastropoda: Neogastropoda) from the Lower Palaeogene of the Atlantic Ocean: implications for the radiation of the Muricopsinae Radwin & D'Attilio, 1971. Comptes Rendus Palevol 1: 167172.Google Scholar
Merle, J. 2005. , new genus of Muricidae (Mollusca: Gastropoda) from the Eocene of the Paris (France) and Hampshire (England) Basins with a phylogenetic assessment of its ocenebrine versus ergalataxine affinities. Geobios 38: 505517.Google Scholar
Nützel, A. 1998. Über die Stammegeschichte der Ptenoglossa (Gastropoda). Berliner Geowissenschaftliche Abhandlungen E 26: 1229.Google Scholar
Nützel, A. 2005a. A new Early Triassic gastropod genus and the recovery of gastropods from the Permian/Triassic extinction. Acta Palaeontologica Polonica 50: 1924.Google Scholar
Nützel, A. 2005b. Recovery of gastropods in the Early Triassic. Comptes Rendus Palevol 4: 501515.Google Scholar
Nützel, A. and Cook, A. G. 2002. , a new caenogastropod from the Early Carboniferous of Australia. Alcheringa 26: 151157.Google Scholar
Nützel, A. and Erwin, D. H. 2004. Late Triassic (late Norian) gastropods from the Wallowa Terrane (Idaho, USA). Paläontologische Zeitschrift 78: 361416.Google Scholar
Nützel, A. and Pan, H-Z. 2005. Late Paleozoic evolution of the Caenogastropoda: larval shell morphology and implications for the Permo-Triassic mass extinction event. Journal of Paleontology 79: 11751188.Google Scholar
Nützel, A., Erwin, D. H., and Mapes, R. H. 2000. Identity and phylogeny of the Late Paleozoic Subulitoidea (Gastropoda). Journal of Paleontology 74: 575598.Google Scholar
Nützel, A., Pan, H-Z., and Erwin, D. H. 2002. New taxa and some taxonomic changes of a latest Permian gastropod fauna from South China. Documenta Naturae 145: 110.Google Scholar
Nützel, A., Blodgett, R. B., and Stanley, G. D. Jr. 2003. Late Triassic gastropods from the Martin Bridge Formation (Wallowa Terrane) of northeastern Oregon and their paleobiogeographic significance. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 228: 83100.Google Scholar
Olsson, A. A. 1944. Contributions to the paleontology of northern Peru: Part VII. The Cretaceous of the Paita region. Bulletins of American Paleontology 28: 65304.Google Scholar
Palmer, A. R. 1996. From symmetry to asymmetry: phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proceedings of the National Academy of Sciences USA 93: 1427914286.Google Scholar
Palmer, A. R. 2004. Symmetry breaking and the evolution of development. Science 306: 828833.Google Scholar
Pan, H-Z. and Erwin, D. H. 2002. Gastropods from the Permian of Guangxi and Yunnan Provinces, South China. Paleontological Society Memoir 56, Suppl. to Journal of Paleontology 76/ 1: 149.Google Scholar
Peel, J. S. 1974. Systematics, ontogeny and functional morphology of Silurian trilobed bellerophontacean gastropods. Bulletin of the Geological Society of Denmark 23: 231264.Google Scholar
Peel, J. S. 1977. Systematics and palaeoecology of the Silurian gastropods of the Arisaig Group, Nova Scotia. Biologiske Skrifter Kongelige Danske Videnskabernes Selskab 21: 589.Google Scholar
Pernet, B. and Kohn, A. J. 1998. Size-related obligate and facultative parasitism in the marine gastropod . Biological Bulletin 195: 349356.Google Scholar
Perrilliat, M. C. and Vega, F. J. 2001. A new genus and species of late Cretaceous xenophorid gastropod from southern Mexico. Veliger 44: 7378.Google Scholar
Peterson, K. J. 2005. Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33: 929932.Google Scholar
Petit, R. E. and Harasewych, M. G. 1986. New Philippine Cancellariidae (Gastropoda: Cancellariacea), with notes on the fine structure and function of the nematoglossan radula. Veliger 28: 436443.Google Scholar
Petuch, E. J. 1998. A new gastropod fauna from an Oligocene back-reef lagoonal environment in west central Florida. Nautilus 110: 122138.Google Scholar
Ponder, W. F. 1972. Notes on some Australian genera and species of the family Muricidae (Neogastropoda). Journal of the Malacological Society of Australia 2: 215248.Google Scholar
Ponder, W. F. 1983. Xenophoridae of the world. Australian Museum Memoir 17: 1126.Google Scholar
Ponder, W. F. 1985. A review of the genera of the Rissoidae (Mollusca: Gastropoda: Rissoacea). Records of the Australian Museum 4: (Suppl.). 1221.Google Scholar
Ponder, W. F. 1988. Truncatelloidean (= Rissoacean) radiation—a preliminary phylogeny. Malacological Reviews 4: (Suppl.). 129166.Google Scholar
Ponder, W. F. and Lindberg, D. R. 1997. Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society 119: 83265.Google Scholar
Quaas, A. 1902. Die Fauna der Overwegischichten und der Blätterthone in der Libyschen Wüste. Palaeontographica 30: 153336.Google Scholar
Riedel, F. 2000. Ursprung und Evolution der “höheren”. Caenogastropoda. Berliner Geowissenschaftliche Abhandlungen E 32: 1240.Google Scholar
Rokas, A. and Carroll, S. B. 2006. Bushes in the tree of life. PLoS Biology 4/ 11: 18991904.Google Scholar
Saul, L. R. and Squires, R. L. 2003. New Cretaceous cerithiform gastropods from the Pacific slope of North America. Journal of Paleontology 77: 442453.Google Scholar
Savazzi, E. 1996. Adaptations of vermetid and siliquariid gastropods. Palaeontology 39: 157177.Google Scholar
Savazzi, E. 2001. Morphodynamics of an endolithic vermetid gastropod. Paleontological Research 5: 311.Google Scholar
Schiaparelli, S. and Cattaneo-Vinetti, R. 1999. Functional morphology of vermetid feeding-tubes. Lethaia 32: 4146.Google Scholar
Schindel, D. E. 1990. Unoccupied morphospace and the coiled geometry of gastropods: architectural constraint on geometric covariation? Pp. 270304in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Schröder, M. 1995. Frühontogenetische Schalen Jurassischer und unterkretazischer Gastropoden aus Norddeutschland und Polen. Palaeontographica A 238: 195.Google Scholar
Sidor, C. A. 2001. Simplification as a trend in synapsid cranial evolution. Evolution 55: 14191442.Google Scholar
Simone, L. R L. 2001. Phylogenetic analyses of Cerithioidea (Mollusca, Caenogastropoda) based on comparative morphology. Arquivos de Zoologia 36: 147263.Google Scholar
Simone, L. R L. 2002. Comparative morphological study and phylogeny of representatives of the superfamily Calyptraeoidea (Mollusca, Caenogastropoda). Biota Neotropica 2/ 2: 1132.Google Scholar
Simone, L. R L. 2004. Comparative morphology and phylogeny of representatives of the superfamilies of architaenioglossans and the Annulariidae (Mollusca, Caenogastropoda). Arquivos do Museum Nacional Rio de Janeiro 62: 387504.Google Scholar
Simone, L. R L. 2005. Comparative morphological study of representatives of the three families of Stromboidea and the Xenophoroidea (Mollusca, Caenogastropoda), with an assessment of their phylogeny. Arquivos de Zoologia 37: 142267.Google Scholar
Squires, R. L. and Kennedy, G. L. 1998. Additions to the Late Paleocene molluscan fauna from the Santa Monica Mountains, Los Angeles County, southern California. Veliger 41: 157171.Google Scholar
Squires, R. L. and Saul, L. R. 2001. New late Cretaceous gastropods from the Pacific slope of North America. Journal of Paleontology 75: 4665.Google Scholar
Squires, R. L. and Saul, L. R. 2003a. New late Cretaceous epitoniid and zygopleurid gastropods from the Pacific slope of North America. Veliger 46: 2049.Google Scholar
Squires, R. L. and Saul, L. R. 2003b. Additions to late Cretaceous shallow-marine gastropods from California. Veliger 46: 145161.Google Scholar
Stanley, G. D. Jr. 1977. Paleoecology of : a gastropod in the Middle Ordovician of Tennessee. Journal of Paleontology 51: 161168.Google Scholar
Strathmann, R. R. 1978a. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32: 894906.Google Scholar
Strathmann, R. R. 1978b. Progressive vacating of adaptive types during the Phanerozoic. Evolution 32: 907914.Google Scholar
Taylor, J. D., Morris, N. J., and Taylor, C. N. 1980. Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology 23: 375409.Google Scholar
Thomas, J. A., Welch, J. J., Woolfit, M. F., and Bromham, L. 2006. There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proceedings of the National Academy of Sciences USA 103: 73667371.Google Scholar
Vermeij, G. J. 1971. Gastropod evolution and morphological diversity in relation to shell geometry. Journal of Zoology 163: 1523.Google Scholar
Vermeij, G. J. 1973. Adaptation, versatility, and evolution. Systematic Zoology 22: 467477.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 1993. A natural history of shells. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 1998a. Generic revision of the neogastropod family Pseudolividae. Nautilus 111: 5384.Google Scholar
Vermeij, G. J. 1998b. New genera of Cenozoic muricid gastropods, with comments on the mode of formation of the labral tooth. Journal of Paleontology 72: 855864.Google Scholar
Vermeij, G. J. 2001. Innovation and evolution at the edge: origins and fates of gastropods with a labral tooth. Biological Journal of the Linnean Society 72: 461508.Google Scholar
Vermeij, G. J. 2002. The geography of evolutionary opportunity: hypothesis and two cases in gastropods. Integrative and Comparative Biology 42: 935940.Google Scholar
Vermeij, G. J. 2004. Nature: an economic history. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J. 2005. Shells inside out: the architecture, evolution and function of shell envelopment in molluscs. pp. 197221in Briggs, D. E. G., ed. Evolving form and function: fossils and development. Peabody Museum of Natural History, Yale University, New Haven, Conn.Google Scholar
Vermeij, G. J. 2006. Historical contingency and the purported uniqueness of evolutionary innovations. Proceedings of the National Academy of Sciences USA 103: 18041809.Google Scholar
Vermeij, G. J. 2007. Escalation and its role in geologic history. Palaeogeography, Palaeoclimatology, Palaeoecology (in press).Google Scholar
Vermeij, G. J. and Carlson, S. J. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology 26: 1946.Google Scholar
Vermeij, G. J. and Dudley, R. 2000. Why are there so few transitions between aquatic and terrestrial ecosystems? Biological Journal of the Linnean Society 70: 541554.Google Scholar
Vermeij, G. J. and Houart, R. 1996. The genus (Muricidae, Ocenebrinae), with the description of a new species from Angola, West Africa. Iberus 14: 8391.Google Scholar
Vermeij, G. J. and Houart, R. 1999. Description of n. gen. (Gastropoda: Muricidae: Ocenebrinae) and review of some West African ocenebrine genera. Basteria 63: 1725.Google Scholar
Vermeij, G. J. and Lindberg, D. R. 2000. Delayed herbivory and the assembly of marine benthic ecosystems. Paleobiology 26: 419430.Google Scholar
Vermeij, G. J. and Signor, P. W. 1992. The geographic, taxonomic and temporal distribution of determinate growth in marine gastropods. Biological Journal of the Linnean Society 47: 233247.Google Scholar
Vermeij, G. J. and Vokes, E. H. 1997. Cenozoic Muricidae of the western Atlantic region. Part XII—The subfamily Ocenebrinae (in part). Tulane Studies in Geology and Paleontology 29: 69118.Google Scholar
Vermeij, G. J. and Wesselingh, F. P. 2002. Neogastropod molluscs from the Miocene of western Amazonia, with comments on marine to freshwater transitions in molluscs. Journal of Paleontology 76: 265270.Google Scholar
Vokes, E. H. 1964. Supraspecific groups in the subfamilies Muricinae and Tritonaliinae (Gastropoda: Muricidae). Malacologia 2: 141.Google Scholar
Vokes, E. H. 1966. The genus (Mollusca: Gastropoda) in the New World. Tulane Studies in Geology 5: 136.Google Scholar
Vokes, E. H. 1970a. Cenozoic Muricidae of the western Atlantic region, Part V. and . Tulane Studies in Geology and Paleontology 8: 150.Google Scholar
Vokes, E. H. 1970b. The genus (Mollusca: Gastropoda) in the New World. Tulane Studies in Geology and Paleontology 7: 7583.Google Scholar
Vokes, E. H. 1989. Neogene paleontology in the northern Dominican Republic 8. The family Muricidae (Mollusca: Gastropoda). Bulletins of American Paleontology 97: 594.Google Scholar
Voltzow, J. 1983. Flow through and around the abalone . Veliger 26: 1821.Google Scholar
Voltzow, J. and Collin, R. 1995. Flow through mantle cavities revisited: was sanitation the key to fissurellid evolution? Invertebrate Biology 111: 145150.Google Scholar
Voltzow, J., Morris, P. J., and Linsley, R. M. 2004. Anatomy of and patterns of water currents through the mantle cavity of pleurotomariid gastropods. Journal of Morphology 262: 659666.Google Scholar
Vredenburg, E. W. 1928. A supplement to the Mollusca of the Ranikot Series, Part I. The molluscan fauna of the upper Ranikot. Memoirs of the Geological Survey of India, Palaeontologia Indica n.s 10: (Memoir 4). 175.Google Scholar
Wagner, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution 50: 9901007.Google Scholar
Wagner, P. J. 1999. Phylogenetic relationships of the earliest anisostrophically coiled gastropods. Smithsonian Contributions to Paleobiology 88: 1152.Google Scholar
Wagner, P. J. and Erwin, D. H. 2006. Patterns of convergence in general shell form among Paleozoic gastropods. Paleobiology 32: 316337.Google Scholar
Warén, A. 1984. A generic revision of the family Eulimidae (Gastropoda, Prosobranchia). Journal of Molluscan Studies 13: (Suppl.). 196.Google Scholar
Warén, A. and Bouchet, P. 1988. A new species of Vanikoridae from the western Mediterranean, with remarks on the northeast Atlantic species of the family. Bollettino Malacologico 24: 73100.Google Scholar
Warén, A. and Bouchet, P. 1991. Mollusca Gastropoda: systematic position and revision of , Dall 1889 (Caenogastropoda, Haloceratidae fam. nov). Mémoires du Muséum National d'Histoire Naturelle A 150: 111161.Google Scholar
Warén, A., Arnaud, P. M., and Cantera, J. 1986. Description of two new gastropods of the Trichotropidae from Kerguelen and Crozet Islands (south Indian Ocean). Veliger 29: 157165.Google Scholar
Wesselingh, F. P. 2000. On relict hydrobiid species in Brazilian Amazonia (Gastropoda, Prosobranchia, Hydrobiidae). Basteria 64: 129136.Google Scholar
Wiens, J. J., Brandley, M. C., and Reeder, T. W. 2006. Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60: 123141.Google Scholar
Wilson, E. O. and Hölldobler, B. 2005. Eusociality: origin and consequences. Proceedings of the National Academy of Sciences USA 102: 1336713371.Google Scholar