Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T21:23:00.411Z Has data issue: false hasContentIssue false

Ecology of extreme faunal turnover of tropical American scallops

Published online by Cambridge University Press:  08 April 2016

J. Travis Smith
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0244. E-mail: [email protected]
Jeremy B. C. Jackson
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0244 Center for Tropical Paleoecology and Archeology, Smithsonian Tropical Research Institute, Box 2072, Balboa, Republic of Panama

Abstract

The marine faunas of tropical America underwent substantial evolutionary turnover in the past 3 to 4 million years in response to changing environmental conditions associated with the rise of the Isthmus of Panama, but the ecological signature of changes within major clades is still poorly understood. Here we analyze the paleoecology of faunal turnover within the family Pectinidae (scallops) over the past 12 Myr. The fossil record for the southwest Caribbean (SWC) is remarkably complete over this interval. Diversity increased from a low of 12 species ca. 10–9 Ma to a maximum of 38 species between 4 and 3 Ma and then declined to 22 species today. In contrast, there are large gaps in the record from the tropical eastern Pacific (TEP) and diversity remained low throughout the past 10 Myr. Both origination and extinction rates in the SWC peaked between 4 and 3 Ma, and remained high until 2–1 Ma, resulting in a 95% species level turnover between 3.5 and 2 Ma. The TEP record was too incomplete for meaningful estimates of origination and extinction rates. All living species within the SWC originated within the last 4 Myr, as evidenced by a sudden jump in Lyellian percentages per faunule from nearly zero up to 100% during this same interval. However, faunules with Lyellian percentages near zero occurred until 1.8 Ma, so that geographic distributions were extraordinarily heterogeneous until final extinction occurred. There were also striking differences in comparative diversity and abundance among major ecological groups of scallops. Free-swimming scallops constituted the most diverse guild throughout most of the last 10 Myr in the SWC, and were always moderately to very abundant. Leptopecten and Argopecten were also highly diverse throughout the late Miocene and early Pliocene, but declined to very few species thereafter. In contrast, byssally attaching scallops gradually increased in both diversity and abundance since their first appearance in our samples from 8–9 Ma and are the most diverse group today. Evolutionary turnover of scallops in the SWC was correlated with strong ecological reorganization of benthic communities that occurred in response to declining productivity and increased development of corals reefs.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aalto, K. R., and Miller, W. III. 1999. Sedimentology of the Pliocene Upper Onzole Formation, and inner-trench slope succession in northwestern Ecuador. Journal of South American Earth Sciences 12:6985.CrossRefGoogle Scholar
Allmon, W. D. 2001. Nutrients, temperature, disturbance, and evolution: a model for the late Cenozoic marine record of the western Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:926.CrossRefGoogle Scholar
Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1993. Diversity of Atlantic coastal plain mollusks since the Pliocene. Science 260:16261629.CrossRefGoogle ScholarPubMed
Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1996. Diversity of Pliocene-Recent mollusks in the western Atlantic: extinction, origination, and environmental change. Pp. 271302 in Jackson, et al., 1996a.Google Scholar
Anderson, L. C. 2001. Temporal and geographic size trends in Neogene Corbulidae (Bivalvia) of tropical America: using environmental sensitivity to decipher causes of morphologic trends. Palaeogeography, Palaeoclimatology, Palaeoecology 166:101120.CrossRefGoogle Scholar
Anderson, L. C., and Roopnarine, P. D. 2003. Evolution and phylogenetic relationships of Neogene Corbulidae (Bivalvia: Myoidea) of tropical America. Journal of Paleontology 77:10861102.2.0.CO;2>CrossRefGoogle Scholar
Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., and Lea, D. W. 2005. Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters 237:3344.CrossRefGoogle Scholar
Best, M. M. R., and Kidwell, S. M. 2000a. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology 26:80102.2.0.CO;2>CrossRefGoogle Scholar
Best, M. M. R., and Kidwell, S. M. 2000b. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. II. Effect of bivalve life habits and shell types. Paleobiology 26:103115.2.0.CO;2>CrossRefGoogle Scholar
Budd, A. F., and Johnson, K. G. 1999. Origination preceding extinction during late Cenozoic turnover of Caribbean reefs. Paleobiology 25:188200.CrossRefGoogle Scholar
Cantalamessa, G., Di Celma, C., and Ragaini, L. 2005. Sequence stratigraphy of the Punta Ballena Member of the Jama Formation (early Pleistocene, Ecuador): insights from integrated sedimentologic, taphonomic and paleoecologic analysis of molluscan shell concentrations. Palaeogeography, Palaeoclimatology, Palaeoecology 216:125.CrossRefGoogle Scholar
Cheetham, A. H., and Jackson, J. B. C. 1996. Speciation, extinction, and the decline of arborescent growth in Neogene and Quaternary cheilostome Bryozoa of tropical America. Pp. 205233 in Jackson, et al., 1996a.Google Scholar
Cheetham, A. H., and Jackson, J. B. C. 2000. Neogene history of cheilostome Bryozoa in tropical America. P. 116 in Herrera, A. and Jackson, J. B. C., eds., Proceedings of the 11th International Bryozoology Association Conference , Allen Press, Lawrence, KS.Google Scholar
Cheetham, A. H., Sanner, J., and Jackson, J. B. C. 2007. Metrarabdotos and Related Genera (Bryozoa: Cheilostomata) in the Late Paleogene and Neogene of Tropical America. Paleontological Society Memoir 67.CrossRefGoogle Scholar
Coates, A. G. 1999. Lithostratigraphy of the Neogene strata of the Caribbean coast from Limon, Costa Rica, to Colon, Panama. Bulletins of American Paleontology 357:1737.Google Scholar
Coates, A. G., and Obando, J. A. 1996. The geologic evolution of the Central American isthmus. Pp. 2156 in Jackson, et al., 1996a.Google Scholar
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Bybell, L. M., Jung, P., and Obando, J. A. 1992. Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin 104:814828.2.3.CO;2>CrossRefGoogle Scholar
Coates, A. G., Aubry, M.-P., Berggren, W. A., Collins, L. S., and Kunk, M. 2003. Early Neogene history of the Central American arc from Bocas del Toro, western Panama. Geological Society of America Bulletin 115:271287.2.0.CO;2>CrossRefGoogle Scholar
Coates, A. G., Collins, L. S., Aubry, M.-P., and Berggren, W. A. 2004. The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. Geological Society of America Bulletin 116:13271344.CrossRefGoogle Scholar
Coates, A. G., McNeill, D. F., Aubry, M.-P., Berggren, W. A., and Collins, L. S. 2005. An introduction to the geology of the Bocas del Toro Archipelago, Panama. Caribbean Journal of Science 41:374391.Google Scholar
Collins, L. S. 1993. Neogene paleoenvironments of the Bocas del Toro Basin, Panama. Journal of Paleontology 67:699710.CrossRefGoogle Scholar
Collins, L. S., Coates, A. G., Jackson, J. B. C., and Obando, J. A. 1995. Timing and rates of emergence of the Limón and Bocas del Toro basins: Caribbean effects of Cocos Ridge subduction? Geological Society of America Special Paper 295:263289.CrossRefGoogle Scholar
Collins, L. S., Budd, A. F., and Coates, A. G. 1996a. Earliest evolution associated with closure of the Tropical American seaway. Proceedings of the National Academy of Sciences USA 93:60696072.CrossRefGoogle ScholarPubMed
Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M.-P., and Zhang, J. 1996b. The late Miocene Panama isthmian strait. Geology 24:687690.2.3.CO;2>CrossRefGoogle Scholar
Foggo, A., Atrill, M. J., Frost, M. T., and Rowden, A. A. 2003. Estimating marine species richness: an evaluation of six extrapolative techniques. Marine Ecology Progress Series 248:1526.CrossRefGoogle Scholar
Hanski, I. A., and Gilpin, M. E. 1997. Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego.Google Scholar
Hasson, P. F., and Fischer, A. G. 1986. Observations on the Neogene of northwestern Ecuador. Micropaleontology 32:3242.CrossRefGoogle Scholar
Haug, G. H., and Tiedemann, R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673676.CrossRefGoogle Scholar
Hayek, L. C., and Bura, E. 2001. On the ends of the taxon range problem. Pp 221422 in Jackson, J. B. C., Lidgard, S., and McKinney, F. K., eds. Evolutionary patterns. University of Chicago Press, Chicago.Google Scholar
Hayek, L. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Jackson, J. B. C. 1972. The ecology of molluscs of Thalassia communities, Jamaica, West Indies. II. Molluscan population variability along an environmental stress gradient. Marine Biology 14:304337.CrossRefGoogle Scholar
Jackson, J. B. C. 1973. The ecology of molluscs of Thalassia communities, Jamaica, West Indies. I. Distribution, environmental physiology, and ecology of common shallow-water species. Bulletin of Marine Science 23:313350.Google Scholar
Jackson, J. B. C., and Erwin, D. H. 2006. What can we learn about ecology and evolution from the fossil record? Trends in Ecology and Evolution 21:322328.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., and Johnson, K. G. 2000. Life in the last few million years. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):221235.CrossRefGoogle Scholar
Jackson, J. B. C., Jung, P., Coates, A. G., and Collins, L. S. 1993. Diversity and extinction of tropical American mollusks and emergence of the Isthmus of Panama. Science 260:16241626.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. 1996a. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., Budd, A. F., and Pandolfi, J. M. 1996b. The shifting balance of natural communities. Pp. 89122 in Jablonski, D., Erwin, D. H., and Lipps, J. E., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P. 1999. Diversity and assemblages of Neogene Caribbean Mollusca of lower Central America. Bulletins of American Paleontology 357:193230.Google Scholar
Jain, S., and Collins, L. S. 2006. Trends in Caribbean paleoproductivity related to the Neogene closure of the Central American Seaway. Marine Micropaleontology 63:5774.CrossRefGoogle Scholar
Johnson, K. G., and Kirby, M. X. 2006. The Emperador Limestone rediscovered: Early Miocene corals from the Culebra Formation, Panama. Journal of Paleontology 80:283293.CrossRefGoogle Scholar
Johnson, K. G., Budd, A. F., and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21:5273.CrossRefGoogle Scholar
Johnson, K. G., Todd, J., and Jackson, J. B. C. 2007. Coral reef development drives molluscan diversity at local and regional scales in the late Neogene and Quaternary of the southwestern Caribbean. Paleobiology 33:2452.CrossRefGoogle Scholar
Jones, D. S., and Allmon, W. D. 1995. Records of upwelling, seasonality, and growth in stable isotope profiles of Pliocene mollusk shells from Florida. Lethaia 28:6174.CrossRefGoogle Scholar
Jones, D. S., and Hasson, P. F. 1985. History and development of the marine invertebrate faunas separated by the Central American Isthmus. Pp. 325355 in Stehli, F. G. and Webb, S. D., eds. The Great American Biotic Interchange. Plenum, New York.CrossRefGoogle Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.2.0.CO;2>CrossRefGoogle Scholar
Kidwell, S. M., and Flessa, K. W. 1996. The quality of the fossil record: populations, species, and communities. Annual Review of Ecology and Systematics 26:269299.CrossRefGoogle Scholar
Knowlton, N. 1986. Cryptic and sibling species among the Decapod Crustacea. Journal of Crustacean Biology 6:356363.CrossRefGoogle Scholar
Landini, W., Bianucci, G., Carnevale, G., Ragaini, L., Sorbini, C., Valleri, G., Bisconti, M., Cantalamessa, G., and Di Celma, C. 2002. Canadian Journal of Earth Sciences 39:2741.CrossRefGoogle Scholar
Marshall, C. R. 1994. Confidence intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology 20:459469.CrossRefGoogle Scholar
Marshall, C. R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23:165173.CrossRefGoogle Scholar
McKinney, F. K., Lidgard, S., Sepkoski, J. J. Jr., and Taylor, P. D. 1998. Decoupled patterns of evolution and ecology in two post-Paleozoic clades. Science 281:807809.CrossRefGoogle ScholarPubMed
McNeill, D. F., Coates, A. G., Budd, A. F., and Borne, P. F. 2000. Integrated paleontologic and paleomagnetic stratigraphy of the upper Neogene deposits around Limon, Costa Rica: a coastal emergence record of the Central American Isthmus. Geological Society of America Bulletin 112:963981.2.0.CO;2>CrossRefGoogle Scholar
Moore, E. J. 1984. Tertiary marine pelecypods of California and Baja California: Propeamussiidae and Pectinidae. U.S. Geological Survey Professional Paper 1228-B.CrossRefGoogle Scholar
Morton, B. 1994. The biology and functional morphology of Leptopecten latiauratus (Conrad, 1837): an “opportunistic scallop.” Veliger 37:522.Google Scholar
Nee, S., and May, R. M. 1992. Dynamics of metapopulations: habitat destruction and competitive coexistence. Journal of Animal Ecology 61:3740.CrossRefGoogle Scholar
O'Dea, A., Jackson, J. B. C., Fortunato, H., Smith, J. T., D'Croz, L., Johnson, K. G., and Todd, J. A. 2007. Environmental change preceded Caribbean extinction by 2 million years. Proceedings National Academy of Sciences USA 104:55015506.CrossRefGoogle ScholarPubMed
Olsson, A. A. 1922. The Miocene of Northern Costa Rica. Bulletins of America Paleontology 9(39).Google Scholar
Olsson, A. A. 1942. Tertiary and Quaternary fossils from Burica Peninsula, Panama and Costa Rica. Bulletins of American Paleontology 27:1106.Google Scholar
Olsson, A. A. 1964. Neogene Mollusks from northwestern Ecuador. Paleontological Research Institution, Ithaca, N.Y. Google Scholar
Pilsbry, H. A., and Olsson, A. A. 1941. A Pliocene fauna from western Ecuador. Proceedings of the Academy of Natural Sciences of Philadelphia 93:179.Google Scholar
Petuch, E. J. 1982. Geographical heterochrony: contemporaneous coexistence of Neogene and Recent molluscan faunas in the Americas. Palaeogeography, Palaeoclimatology, Palaeoecology 37:277312.CrossRefGoogle Scholar
Petuch, E. J. 1995. Molluscan diversity in the Late Neogene of Florida: evidence for a two-staged mass extinction. Science 270:275277.CrossRefGoogle Scholar
Roopnarine, P. D. 1996. Systematics, biogeography and extinction of Chionine bivalves (Bivalvia: Veneridae) in Tropical America: Early Oligocene to Recent. Malacologia 38:103142.Google Scholar
Roopnarine, P. D., and Vermeij, G. J. 2000. One species becomes two: the case of Chione cancellata, the resurrected C. elevata, and a phylogenetic analysis of Chione . Journal of Molluscan Studies 66:517534.CrossRefGoogle Scholar
Smith, J. T., and Jackson, J. B. C. 2004. Intra versus interspecific differences in larval shell size and their macro-evolutionary significance. Geological Society of America Abstracts with Programs 36(5):19.Google Scholar
Smith, J. T., and Roy, K. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32:408416.CrossRefGoogle Scholar
Smith, J. T., Nakanishi, N., and Jackson, J. B. C. 2003. Late Neogene divergence in life span of scallop larvae across the Isthmus of Panama. GSA Abstracts with Programs 35(6):318.Google Scholar
Smith, J. T., Jackson, J. B. C., and Fortunato, H. 2006. Diversity and abundance of tropical American Scallops (Bivalvia: Pectinidae) from opposite sides of the Central American Isthmus. Veliger 48:2645.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125.CrossRefGoogle Scholar
Stanley, S. M. 1986a. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the Western Atlantic bivalve fauna. Palaios 1:1736.CrossRefGoogle Scholar
Stanley, S. M. 1986b. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.CrossRefGoogle Scholar
Stanley, S. M., and Campbell, L. D. 1981. Neogene mass extinctions of western Atlantic mollusks. Nature 293:457459.CrossRefGoogle Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.CrossRefGoogle Scholar
Stump, T. E. 1979. The evolutionary biogeography of the West Mexican Pectinidae (Mollusca: Bivalvia). Ph.D. dissertation. University of California, Davis.Google Scholar
Tilman, D., May, R. M., Lehman, C. L., and Nowak, M. A. 1994. Habitat destruction and the extinction debt. Nature 371:6566.CrossRefGoogle Scholar
Todd, J. A., Jackson, J. B. C., Johnson, K. G., Fortunato, H. M., Heitz, A., Alvarez, M., and Jung, P. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269:571577.CrossRefGoogle ScholarPubMed
Vermeij, G. J. 1978. Biogeography and adaptation: patterns of marine life. Harvard University Press, Cambridge.Google Scholar
Vermeij, G. J., and Petuch, E. J. 1986. Differential extinction in tropical American mollusks: endemism, architecture, and the Panama land bridge. Malacologia 27:2941.Google Scholar
Waller, T. R. 1969. The evolution of the Argopecten gibbus stock (Mollusca: Bivalvia), with and emphasis on the Tertiary and Quaternary species of eastern North America. Journal of Paleontology 43(Suppl. to No. 5).CrossRefGoogle Scholar
Waller, T. R. 1978. Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Philosophical Transactions of the Royal Society of London B 284:345365.Google Scholar
Waller, T. R. 1984. The ctenolium of scallop shells: functional morphology of a key family-level character in the Pectinicaea (Mollusca: Bivalvia). Malacologia 25:203219.Google Scholar
Waller, T. R. 1991. Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae). Pp. 173 in Shumway, S. E., ed. Scallops: biology, ecology and aquaculture. Elsevier, New York.Google Scholar
Waller, T. R. 1993. The evolution of “Chlamys“ (Mollusca: Bivalvia: Pectinidae) in the tropical western Atlantic and eastern Pacific. American Malacological Bulletin 10:195249.Google Scholar
Waller, T. R. 2006. New phylogenies of the Pectinidae (Mollusca: Bivalvia): reconciling morphological and molecular approaches. Pp. 144 in Shumway, S. E., ed. Scallops: biology, ecology and aquaculture, 2d ed. Elsevier, New York.Google Scholar
Wang, S. C., and Marshall, C. R. 2004. Improved confidence intervals for estimating the position of a mass extinction boundary. Paleobiology 30:518.2.0.CO;2>CrossRefGoogle Scholar
Woodring, W. P. 1957–1982. Geology and paleontology of Canal Zone and adjoining parts of Panama. U.S. Geological Survey Professional Paper 306, Parts A–E.Google Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. Proceedings of the American Philosophical Society 110:425433.Google Scholar