Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:31:26.716Z Has data issue: false hasContentIssue false

The dynamics of peak shifts and the pattern of morphological evolution

Published online by Cambridge University Press:  08 April 2016

Russell Lande*
Affiliation:
Department of Biology, University of Chicago, Chicago, Illinois 60637

Abstract

Recent theoretical results demonstrate that a phenotypic version of Wright's shifting balance theory generates the dynamical pattern of punctuated equilibria. Thus, classical mechanisms of random genetic drift and selection for multiple adaptive peaks produce geologically long periods of relative stasis interrupted occasionally by very brief intervals of rapid change. A simple extension of this theory is made here to encompass developmental constraints between quantitative characters, manifested as phenotypic and genetic correlations between characters. Developmental constraints do not qualitatively alter the dynamical pattern of phenotypic evolution produced by selection and random genetic drift. A quantitative definition of stasis is proposed, based on a common taxonomic practice for recognizing subspecies. From this it is concluded that stasis is not the rule for quantitative measurements of detailed sequences for fossil species throughout most of their existence. Instead, periods of relative stasis are interspersed with gradual fluctuating trends, short intervals of rapid change, and discontinuities of subspecific magnitude.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. 1982. Developmental constraints in evolutionary processes. Pp. 313332. In: Bonner, J. T., ed. Evolution and Development. Springer-Verlag; New York.Google Scholar
Bader, R. S. and Hall, J. S. 1960. Osteometric variation and function in bats. Evolution. 14:817.Google Scholar
Barton, N. H. and Charlesworth, B. 1984. Genetic revolutions, founder effects, and speciation. Ann. Rev. Ecol. Syst. 15:133164.Google Scholar
Bell, M. A., Baumgartner, J. V., and Olson, E. C. 1985. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology. 11:258271.CrossRefGoogle Scholar
Boag, P. T. 1983. The heritability of external morphology in Darwin's ground finches (Geospiza) on Isla Daphne Major, Galapagos. Evolution. 37:877894.Google ScholarPubMed
Bookstein, F. L., Gingerich, P. D., and Kluge, A. G. 1978. Hierarchical linear modelling of the tempo and mode of evolution. Paleobiology. 4:120134.Google Scholar
Bulmer, M. G. 1980. The Mathematical Theory of Quantitative Genetics. Oxford Univ. Press; New York.Google Scholar
Carson, H. L. and Lande, R. 1984. Inheritance of a secondary sexual character in Drosophila silvestris. Proc. Natl. Acad. Sci. USA. 81:69046907.CrossRefGoogle ScholarPubMed
Caspari, E. 1952. Pleiotropic gene action. Evolution. 6:118.CrossRefGoogle Scholar
Charlesworth, B. 1980. Evolution in Age-structured Populations. Cambridge Univ. Press; New York.Google Scholar
Charlesworth, B. 1984. Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology. 10:308318.CrossRefGoogle Scholar
Charlesworth, B., Lande, R., and Slatkin, M. 1982. A neo-Darwinian commentary on macroevolution. Evolution. 36:474498.Google ScholarPubMed
Cheverud, J. M. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution. 36:499516.Google Scholar
Cheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution by selection. J. Theoret. Biol. 110:155171.CrossRefGoogle ScholarPubMed
Cheverud, J. M., Rutledge, J. J., and Atchley, W. R. 1983. Quantitative genetics of development: genetic correlations among age-specific trait values and the evolution of ontogeny. Evolution. 37:895905.Google ScholarPubMed
Coope, G. R. 1979. Late Cenozoic fossil Coleoptera: evolution, biogeography, and ecology. Ann. Rev. Ecol. Syst. 10:247267.CrossRefGoogle Scholar
Coyne, J. A. 1985. Genetic studies of three sibling species of Drosophila with relationship to theories of speciation. Genet. Res. 46:169192.Google Scholar
Crow, J. F. and Kimura, M. 1970. An Introduction to Population Genetics Theory. Harper & Row; New York.Google Scholar
Davis, M. B. 1976. Pleistocene biogeography of temperate deciduous forests. Geoscience and Man. 13:1326.Google Scholar
Diamond, J. M. 1984. “Normal” extinctions of isolated populations. Pp. 191246. In: Nitecki, M., ed. Extinctions. Univ. Chicago Press; Chicago.Google Scholar
Dodson, M. M. 1975. Quantum evolution and the fold catastrophe. Evol. Theory. 1:107118.Google Scholar
Dodson, M. M. 1976. Darwin's law of natural selection and Thom's theory of catastrophes. Mathematical Biosciences. 28:243274.Google Scholar
Eldredge, N. 1985. Time Frames, the Rethinking of Darwinian Evolution and the Theory of Punctuated Equilibria. Simon & Schuster; New York.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper; San Francisco.Google Scholar
Endler, J. A. 1977. Geographic Variation, Speciation, and Clines. Princeton Univ. Press; Princeton.Google ScholarPubMed
Ewens, W. J. 1979. Mathematical Population Genetics. Springer-Verlag; New York.Google Scholar
Falconer, D. S. 1981. Introduction to Quantitative Genetics. 2d ed.Longman; New York.Google Scholar
Fisher, R. A. 1958. The Genetical Theory of Natural Selection. 2d ed.Dover; New York.Google Scholar
Gingerich, P. D. 1985. Species in the fossil record: concepts, trends, and transitions. Paleobiology. 11:2741.Google Scholar
Gould, S. J. 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Pp. 83104. In: Milkman, R., ed. Perspectives on Evolution. Sinauer; Sunderland, MA.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Grant, B. R. 1985. Selection on bill characters in a population of Darwin's finches: Geospiza conirostris on Isla Genovesa, Galapagos. Evolution. 39:523532.Google Scholar
Hoffman, A. 1982. Punctuated versus gradual mode of evolution: a reconsideration. Evol. Biol. 15:411436.CrossRefGoogle Scholar
Karlin, S. and Taylor, H. M. 1981. A Second Course in Stochastic Processes. Academic Press; New York.Google Scholar
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology. 1:359370.CrossRefGoogle Scholar
Kellogg, D. E. and Hays, J. D. 1975. Microevolutionary patterns in Late Cenozoic Radiolaria. Paleobiology. 1:150160.Google Scholar
Kipnis, C. and Newman, C. M. 1985. The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45:972982.Google Scholar
Kirkpatrick, M. 1982. Quantum evolution and punctuated equilibria in continuous genetic characters. Am. Nat. 119:833848.Google Scholar
Kurtén, B. 1958. Life and death of a Pleistocene cave bear, a study in paleoecology. Acta Zool. Fennica. 95:159.Google Scholar
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution. 30:314334.Google Scholar
Lande, R. 1978. Evolutionary mechanisms of limb loss in tetrapods. Evolution. 32:7392.Google Scholar
Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution. 33:402416.Google Scholar
Lande, R. 1980a. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116:463479.Google Scholar
Lande, R. 1980b. The genetic covariance between characters maintained by pleiotropic mutations. Genetics. 94:203215.CrossRefGoogle ScholarPubMed
Lande, R. 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics. 99:541553.Google Scholar
Lande, R. 1982. A quantitative genetic theory of life history evolution. Ecology. 63:607615.Google Scholar
Lande, R. 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity. 50:4766.Google Scholar
Lande, R. 1984. The genetic correlation between characters maintained by selection, linkage and inbreeding. Genet. Res. 44:309320.Google Scholar
Lande, R. 1985. Expected time for random genetic drift of a population between stable phenotypic states. Proc. Natl. Acad. Sci. USA. 82:76417645.Google Scholar
Lande, R. and Arnold, S. J. 1983. The measurement of selection on correlated characters. Evolution. 37:12101226.Google Scholar
Lazarus, D. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatum. Paleobiology. 12:175189.Google Scholar
Levinton, J. S. 1986. Developmental constraints and evolutionary saltations: a discussion and critique. Pp. 253288. In: Gustafson, J. P., Stebbins, G. L., and Ayala, F. J., eds. Genetics, Development and Evolution. 17th Stadler Genetics Symposium, Univ. Missouri, Columbia. Plenum; New York.Google Scholar
Lewontin, R. C. 1974. The Genetic Basis of Evolutionary Change. Columbia Univ. Press; New York.Google Scholar
Maderson, P. F. A., Alberch, P., Goodwin, B. C., Gould, S. J., Hoffman, A., Murray, J. D., Raup, D. M., de Ricqles, A., Seilacher, A., Wagner, G. P., and Wake, D. B. 1982. The role of development in macroevolutionary change. Pp. 279312. In: Bonner, J. T., ed. Evolution and Development. Springer-Verlag; New York.Google Scholar
Malmgren, B. A. and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology. 7:230240.CrossRefGoogle Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology. 9:377389.Google Scholar
Maruyama, T. and Kimura, M. 1974. A note on the speed of gene frequency changes in reverse directions in a finite population. Evolution. 28:161163.Google Scholar
Maynard Smith, J. 1983. The genetics of stasis and punctuation. Ann. Rev. Genet. 17:1125.Google Scholar
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L. 1985. Developmental constraints and evolution. Quart. Rev. Biol. 60:265287.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. Harvard Univ. Press; Cambridge, MA.Google Scholar
Mayr, E. 1969. Principles of Systematic Zoology. McGraw-Hill; New York.Google Scholar
Milligan, B. G. 1986. Punctuated evolution induced by ecological change. Am. Nat. 127:522532.Google Scholar
Muller, H. J. 1949. Redintegration of the symposium on genetics, paleontology, and evolution. Pp. 185268. In: Jepsen, G. L., Simpson, G. G., and Mayr, E., eds. Genetics, Paleontology, and Evolution. Princeton Univ. Press; Princeton. (Reprinted 1963, Atheneum; New York)Google Scholar
Newman, C. M., Cohen, J. E., and Kipnis, C. 1985. Neo-Darwinian evolution implies punctuated equilibria. Nature. 315:400401.Google Scholar
Olson, E. C. and Miller, R. L. 1958. Morphological Integration. Univ. Chicago Press; Chicago.Google Scholar
Partridge, L. 1978. Habitat selection. Pp. 351376. In: Krebs, J. R. and Davies, N. B., eds. Behavioral Ecology. Blackwell; London.Google Scholar
Petry, D. 1982. The pattern of phyletic speciation. Paleobiology. 8:5666.Google Scholar
Price, T. D., Grant, P. R., Gibbs, H. L., and Boag, P. T. 1984. Recurrent patterns of natural selection in a population of Darwin's finches. Nature. 309:787789.Google Scholar
Raup, D. M. and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology. 7:200215.Google Scholar
Rensch, B. 1959. Evolution above the Species Level. Columbia Univ. Press; New York.Google Scholar
Reyment, R. A. 1982. Phenotypic evolution in a Cretaceous foraminifer. Evolution. 36:11821199.Google Scholar
Reyment, R. A. 1985. Phenotypic evolution in a lineage of the Eocene ostracod Echinocythereis. Paleobiology. 11:174194.Google Scholar
Robertson, A., ed. 1980. Selection Experiments in Laboratory and Domestic Animals. Commonwealth Agricultural Bureaux; Farnham Royal, Slough, UK.Google Scholar
Sadler, P. M. and Dingus, L. W. 1982. Expected completeness of sedimentary sections: estimating a time-scale dependent, limiting factor in the resolution of the fossil record. Pp. 461464. In: Mamet, B. and Copeland, M. J., eds. Proc. 3d N. Am. Paleontol. Conv., vol. 2. Business and Economic Service; Toronto.Google Scholar
Sambol, M. and Finks, R. M. 1977. Natural selection in a Cretaceous oyster. Paleobiology. 3:116.Google Scholar
Scharloo, W. 1964. The effect of disruptive and stabilizing selection on the expression of a cubitus interruptus mutant in Drosophila. Genetics. 50:553562.Google Scholar
Schindel, D. E. 1982. Resolution analysis: a new approach to the gaps in the fossil record. Paleobiology. 8:340353.Google Scholar
Schluter, D., Price, T. D., and Grant, P. R. 1985. Ecological character displacement in Darwin's finches. Science. 227:10561059.Google Scholar
Schoener, T. W. 1983. Rate of species turnover decreases from lower to higher organisms: a review of the data. Oikos. 41:372377.Google Scholar
Sheridan, A. K. and Barker, J. S. F. 1974. Two-trait selection and the genetic correlation. II. Changes in the genetic correlation during two-trait selection. Aust. J. Biol. Sci. 27:89101.Google ScholarPubMed
Simberloff, D. S. 1974. Equilibrium theory of island biography. Ann. Rev. Ecol. Syst. 5:161182.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia Univ. Press; New York.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press; New York.Google Scholar
Simpson, G. G. 1961. Principles of Animal Taxonomy. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Van Valen, L. 1963. Selection in natural populations: Merychippus primus, a fossil horse. Nature. 197:11811183.Google Scholar
Waddington, C. H. 1960. Experiments on canalizing selection. Genet. Res. 1:140150.Google Scholar
Wagner, G. P. 1984. On the eigenvalue distribution of genetic and phenotypic dispersion matrices: evidence for a nonrandom organization of quantitative character variation. J. Math. Biol. 21:7795.Google Scholar
Wake, D. B., Roth, G., and Wake, M. H. 1983. On the problem of stasis in organismal evolution. J. Theoret. Biol. 101:211224.Google Scholar
White, M. J. D. 1978. Modes of Speciation. Freeman; San Francisco.Google Scholar
Wright, S. 1932. The roles of mutation, in breeding, crossbreeding and selection in evolution. Proc. 6th Int. Cong. Genet. 1:356366.Google Scholar
Wright, S. 1940. Breeding structure of populations in relation to speciation. Am. Nat. 74:232248.Google Scholar
Wright, S. 1968. Evolution and the Genetics of Populations. Vol. 1. Genetic and Biometric Foundations. Univ. Chicago Press; Chicago.Google Scholar
Wright, S. 1969. Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies. Univ. Chicago Press; Chicago.Google Scholar
Wright, S. 1977. Evolution and the Genetics of Populations. Vol. 3. Experimental Results and Evolutionary Deductions. Univ. Chicago Press; Chicago.Google Scholar
Wright, S. 1978. Evolution and the Genetics of Populations. Vol. 4. Variability within and among Natural Populations. Univ. Chicago Press; Chicago.Google Scholar