Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T03:20:19.184Z Has data issue: false hasContentIssue false

Diversification of mammals from the Miocene of Spain

Published online by Cambridge University Press:  08 April 2016

M. Soledad Domingo
Affiliation:
Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. E-mail: [email protected]
Catherine Badgley
Affiliation:
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. E-mail: [email protected]
Beatriz Azanza
Affiliation:
Departamento de Ciencias de la Tierra, Facultad de Ciencias, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Universidad de Zaragoza, Zaragoza 50009, Spain. E-mail: [email protected]
Daniel DeMiguel
Affiliation:
Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain. E-mail: [email protected]
M. Teresa Alberdi
Affiliation:
Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, Madrid 28006, Spain. E-mail: [email protected]

Abstract

The mammalian fossil record of Spain is long and taxonomically well resolved, offering the most complete record of faunal change for the Neogene of Europe. We evaluated changes in diversification, composition, trophic structure, and size structure of large mammals over the middle and late Miocene with methods applied to this record for the first time, including ordination of fossil localities to improve temporal resolution and estimation of confidence intervals on taxa temporal ranges. By contrast, analysis within the traditional Mammal Neogene (MN) biochronology obscures important aspects of diversification. We used inferred temporal ranges of species and evaluated per capita rates of origination, extinction, diversification, and turnover over 0.5-Myr time intervals.

Three periods of significant faunal change occurred between 12.0 and 5.5 Ma: (1) From 12.0 to 10.5 Ma, elevated origination rates led to an increase in diversity without significant change in ecological structure. Immigrants and geographic-range shifts of species to lower latitudes during an interval of global cooling contributed to these faunal changes. (2) From 9.5 to 7.5 Ma, high extinction rates followed by high origination rates coincided with significant changes in taxonomic composition and ecological structure. These changes represent the Vallesian Crisis, with replacement of a fauna of forest affinities (with frugivores and browsers) by a fauna of open woodlands (with grazers and mixed feeders). (3) From 6.5 to 5.5 Ma, high extinction rates reduced diversity without substantial changes in ecological structure, and large mammal faunas became highly endemic across the northern Mediterranean region. This interval includes the Messinian Salinity Crisis, the desiccation of the Mediterranean basin. Extinction may have been caused by geographic isolation and aridification, with evolution of endemic lineages giving rise to new species in the early Pliocene. These distinct macroevolutionary patterns of faunal change correspond to different geographic scales of inferred climatic and tectonic drivers.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agustí, J., and Antón, M. 2002. Mammoths, sabertooths, and hominids: 65 million years of mammalian evolution in Europe. Columbia University Press, New York.Google Scholar
Agustí, J., and Moyà-Solà, S. 1990. Mammal extinctions in the Vallesian (Upper Miocene). Lecture Notes in Earth Science 30:425432.Google Scholar
Agustí, J., Cabrera, L., Garcés, M., and Llenas, M. 1999a. Mammal turnover and global climate change in the late Miocene terrestrial record of the Vallès-Penedès Basin (NE Spain). Pp. 397412in Agustí et al. 1999b.Google Scholar
Agustí, J., Rook, L., and Andrews, P., eds. 1999b. The evolution of Neogene terrestrial ecosystems in Europe. Cambridge University Press, Cambridge.Google Scholar
Agustí, J., Cabrera, L., Garcés, M., Krijgsman, W., Oms, O., and Parés, J. M. 2001. A calibrated mammal scale for the Neogene of Western Europe: state of the art. Earth-Science Reviews 52:247260.Google Scholar
Agustí, J., Sanz de Siria, A., and Garcés, M. 2003. Explaining the end of the hominoid experiment in Europe. Journal of Human Evolution 45:145153.Google Scholar
Agustí, J., Garcés, M., and Krijgsman, W. 2006. Evidence for African-Iberian exchanges during the Messinian in the Spanish mammalian record. Palaeogeography, Palaeoclimatology, Palaeoecology 238:514.CrossRefGoogle Scholar
Alba, D. M., Agustí, J., and Moyà-Solà, S. 2001. Completeness of the mammalian fossil record in the Iberian Neogene. Paleobiology 27:7983.Google Scholar
Alberdi, M. T., Azanza, B., Cerdeño, E., and Prado, J. L. 1997. Similarity relationship between mammal faunas and biochronology from Latest Miocene to Pleistocene in the Western Mediterranean area. Eclogae Geologicae Helvetiae 90:115132.Google Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Azanza, B., Alberdi, M. T., and Prado, J. L. 2000. Large mammal turnover pulses correlated with latest Neogene glacial trends in the northwestern Mediterranean region. InHart, M. B., ed. Climates: Past and Present. Geological Society, London (Special Publication 181):161170.Google Scholar
Badgley, C., and Finarelli, J. 2013. Diversity dynamics of mammals in relation to tectonic and climatic history: comparison of three Neogene records from North America. Paleobiology 39:373399.CrossRefGoogle Scholar
Badgley, C., Barry, J. C., Morgan, M. E., Nelson, S. V., Behrensmeyer, A. K., Cerling, T. E., and Pilbeam, D. 2008. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proceedings of the National Academy of Sciences USA 105:1214512149.Google Scholar
Barry, J. C., Morgan, M. E., Flynn, L. J., Pilbeam, D., Behrensmeyer, A. K., Raza, S. M., Khan, I. A., Badgley, C., Hicks, J., and Kelley, J. 2002. Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology Memoir 3. Paleobiology 28 (Suppl. to No. 2):171.CrossRefGoogle Scholar
Bernor, R. L., Koufos, G. D., Woodburne, M. O., and Fortelius, M. 1996. The evolutionary history and biochronology of European and Southwest Asian Late Miocene and Pliocene Hipparionine horses. Pp. 137154inBernor, R. L., Fahlbusch, V. and Mittman, H. W., eds. The Evolution of Western Eurasian Neogene mammal faunas. Columbia University Press, New York.Google Scholar
Bernor, R. L., Tobien, H., Hayek, L.-A., and Mittmann, H.-W. 1997. The Höwenegg Hipparionine horses: systematics, stratigraphy, taphonomy and paleoenvironmental context. Andrias 10:1230.Google Scholar
Bonis, L. de, and Koufos, G. D. 1999. The Miocene large mammal succession in Greece. Pp. 205237in Agustí et al. 1999b.Google Scholar
Brown, R. P., Suárez, N. M., and Pestano, J. 2002. The Atlas Mountains as a biogeographical divide in North-West Africa: evidence from mtDNA evolution in the Agamid lizard Agama impalearis. Molecular Phylogenetics and Evolution 24:324332.Google Scholar
Casanovas-Vilar, I., and Agustí, J. 2007. Ecogeographical stability and climate forcing in the Late Miocene (Vallesian) rodent record of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 248:169189.Google Scholar
Casanovas-Vilar, I., Moyà-Solà, S., Agustí, J., and Köhler, M. 2005. The geography of a faunal turnover: tracking the Vallesian Crisis. Pp. 247301inElewa, A. T., ed. Migration of organisms: climate, geography, ecology. Springer, Heidelberg.Google Scholar
Casanovas-Vilar, I., García-Paredes, I., Alba, D. M., van den Hoek Ostende, L. W., and Moyà-Solà, S. 2010. The European Far West: Miocene mammal isolation, diversity and turnover in the Iberian Peninsula. Journal of Biogeography 37:10791093.Google Scholar
Casanovas-Vilar, I., Alba, D. M., Garcés, M., Robles, J. M., and Moyà-Solà, S. 2011. Updated chronology for the Miocene hominoid radiation in Western Eurasia. Proceedings of the National Academy of Sciences USA 108:55545559.Google Scholar
Casanovas-Vilar, I., van den Hoek Ostende, L. W., Furió, M., and Madern, A. 2012. Patterns as pretty as can be: the range and extent of the Vallesian Crisis (Late Miocene) in the Vallès-Penedès Basin (Catalonia, Spain). Journal of Vertebrate Paleontology 32 (Suppl.):75.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153158.Google Scholar
Costeur, L., and Legendre, S. 2008. Spatial and temporal variation in European Neogene large mammals diversity. Palaeogeography, Palaeoclimatology, Palaeoecology 261:127144.Google Scholar
Costeur, L., Montuire, S., Legendre, S., and Maridet, O. 2007. The Messinian Event: what happened to the peri-Mediterranean mammalian communities and local climate? Geobios 40:423431.Google Scholar
Daams, R., van der Meulen, A. J., Álvarez Sierra, M. A., Peláez-Campomanes, P., and Krijgsman, W. 1999. Aragonian stratigraphy reconsidered, and a re-evaluation of the middle Miocene mammal biochronology in Europe. Earth and Planetary Science Letters 165:287294.Google Scholar
DeMiguel, D. 2009. Morfología funcional y biomecánica de la dentición en rumiantes (Mammalia, Artiodactyla). Aplicación del desgaste dentario en la reconstrucción paleoambiental del Mioceno de la Cordillera Ibérica. Ph.D. thesis. Universidad de Zaragoza, Zaragoza, Spain.Google Scholar
DeMiguel, D., Azanza, B., and Morales, J. 2011. Paleoenvironments and paleoclimate of the Middle Miocene of central Spain: a reconstruction from dental wear of ruminants. Palaeogeography, Palaeoclimatology, Palaeoecology 302:452463.Google Scholar
Domingo, L., Koch, P. L., Hernández Fernández, M., Fox, D. L., Domingo, M. S., and Alberdi, M. T. 2013. Late Neogene and early Quaternary paleoenvironmental and paleoclimatic conditions in Southwestern Europe: isotopic analyses on mammalian taxa. PLoS ONE 8 (5): e63739. doi:10.1371/journal.pone.0063739.CrossRefGoogle ScholarPubMed
Domingo, M. S., Alberdi, M. T., and Azanza, B. 2007. A new quantitative biochronological ordination for the Upper Neogene mammalian localities of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 255:361376.Google Scholar
Edwards, A. W. F. 1992. Likelihood, expanded ed. Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Eronen, J. T., Ataabadi, M. M., Micheels, A., Karme, A., Bernor, R. L., and Fortelius, M. 2009. Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proceedings of the National Academy of Sciences USA 106:11,86711,871.Google Scholar
Eronen, J. T., Fortelius, M., Micheels, A., Portmann, F. T., Puolamäki, K., and Janis, C. M. 2012. Neogene aridification of the Northern Hemisphere. Geology 40:823826.Google Scholar
Fauquette, S., Suc, J.-P., Bertini, A., Popescu, S.-M., Warny, S., Taoufiq, N. B., Pérez Villa, M.-J., Chikhi, H., Feddi, N., Sullaby, D., Clauzon, G., and Ferrier, J. 2006. How much did climate force the Messinian Salinity Crisis? Quantified climatic conditions from pollen records in the Mediterranean Region. Palaeogeography, Palaeoclimatology, Palaeoecology 238:281301.Google Scholar
Finarelli, J. A., and Badgley, C. 2010. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proceedings of the Royal Society of London B 277:27212726.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.Google Scholar
Fortelius, M., coord. 2012. New and Old Worlds database of fossil mammals (NOW). University of Helsinki. http://www.helsinki.fi/science/now/ (accessed January 2012).Google Scholar
Fortelius, M., Eronen, J., Liu, L., Pushkina, D., Tesakov, A., Vislobokova, I., and Zhang, Z. 2006. Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology 238:219227.Google Scholar
Franzen, J. L., and Storch, G. 1999. Late Miocene mammals from Central Europe. Pp. 165190in Agustí et al. 1999b.CrossRefGoogle Scholar
Gibert, L., Scott, G. R., Montoya, P., Ruiz-Sánchez, F. J., Morales, J., Luque, L., Abella, J., and Lería, M. 2013. Evidence for an African-Iberian mammal dispersal during the pre-evaporitic Messinian. Geology 41:691694.Google Scholar
Gomez, F., Beauchamp, W., and Barazangi, M. 2000. Role of the Atlas Mountains (northwest Africa) within the African-Eurasian plate-boundary zone. Geology 28:775778.Google Scholar
Gómez Cano, A. R., Hernández Fernández, M., and Álvarez-Sierra, M. A. 2011. Biogeographic provincialism in rodent faunas from the Iberoccitanian Region (southwestern Europe) generates severe diachrony within the Mammalian Neogene (MN) biochronologic scale during the Late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 307:193204.Google Scholar
Gómez Cano, A. R., Cantalapiedra, J. L., Mesa, A., Bofarull, A. Moreno, and Hernández Fernández, M. 2013. Global climate changes drive ecological specialization of mammal faunas: trends in rodent assemblages from the Iberian Plio-Pleistocene. BMC Evolutionary Biology 13:94.Google Scholar
Gradstein, F., Ogg, J., and Smith, A. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Hammer, Ø., and Harper, D. 2006. Paleontological data analysis. Blackwell, Malden, Mass.Google Scholar
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, A. C. 2001. Role of Panama uplift on oceanic freshwater balance. Geology 29:207210.Google Scholar
Hernández Fernández, M., Azanza, B., and Álvarez Sierra, M. A. 2004. Iberian Plio-Pleistocene biochronology: micromammalian evidence for MNs and ELMAs calibration in southwestern Europe. Journal of Quaternary Science 19:605616.Google Scholar
Hernández Fernández, M., Alberdi, M. T., Azanza, B., Montoya, P., Morales, J., Nieto, M., and Peláez-Campomanes, P. 2006. Identification problems of arid environments in the Neogene-Quaternary mammal record of Spain. Journal of Arid Environments 66:585608.Google Scholar
Hsü, K. J., Ryan, W. B. F., and Cita, M. B. 1973. Late Miocene desiccation of the Mediterranean. Nature 242:240244.Google Scholar
Jiménez-Moreno, G., Fauquette, S., and Suc, J.-P. 2010. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Review of Paleobotany and Palynology 162:403415.Google Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.Google Scholar
Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., and Wilson, D. S. 1999. Chronology, causes and progression of the Messinian Salinity Crisis. Nature 400:652655.CrossRefGoogle Scholar
Kuhlemann, J. 2007. Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the Oligocene. Global and Planetary Change 58:224236.CrossRefGoogle Scholar
Lunkka, J. P., Fortelius, M., Kappelman, J., and Sen, S. 1999. Chronology and mammal faunas of the Miocene Sinap Formation, Turkey. Pp. 238264in Agustí et al. 1999b.Google Scholar
Maas, M. C., Anthony, M. R. L., Gingerich, P. D., Gunnell, G., and Krause, D. W. 1995. Mammalian generic diversity and turnover in the Late Paleocene and Early Eocene of the Bighorn and Crazy Mountains Basins, Wyoming and Montana (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 115:181207.Google Scholar
Mariotti, A., Struglia, M. V., Zeng, N., and Lau, K.-M. 2002. The hydrological cycle in the Mediterranean Region and implications for the water budget of the Mediterranean Sea. Journal of Climate 15:16741690.Google Scholar
Marmi, J., Casanovas-Vilar, I., Robles, J. M., Moyà-Solà, S., and Alba, D. 2012. The paleoenvironment of Hispanopithecus laietanus as revealed by paleobotanical evidence from the Late Miocene of Can Llobateres 1 (Catalonia, Spain). Journal of Human Evolution 62:412423.Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
Marshall, C. R. 1994. Confidence intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology 20:459469.Google Scholar
Marshall, C. R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23:165173.Google Scholar
Marshall, C. R. 2010. Using confidence intervals to quantify the uncertainty on the end-points of stratigraphic ranges. InAlroy, J. and Hunt, G., eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:291316.Google Scholar
Matson, S. D., and Fox, D. L. 2010. Stable isotopic evidence for terrestrial latitudinal climate gradients in the Late Miocene of the Iberian Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 287:2844.CrossRefGoogle Scholar
Mein, P. 1975. Résultats du groupe de travail des vertébrés: biozonation du Néogène méditerranéen à partir des mammifères. Pp. 7781inSenes, J., ed. Report on activity of the Regional Committee on Mediterranean Neogene Stratigraphy, Bratislava.Google Scholar
Morales, J., Nieto, M., Kohler, M., and Moyà-Solà, S. 1999. Large mammals from the Vallesian of Spain. Pp. 113126in Agustí et al. 1999.Google Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record. InJoysey, K. A. and Friday, A. E., eds. Problems of phylogenetic reconstruction. Systematics Association Special Volume 21:75117. Academic Press, London.Google Scholar
Pound, M. J., Haywood, A. M., Salzmann, U., and Riding, J. B. 2012. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth-Science Reviews 112:122.Google Scholar
Rouchy, J. M., and Caruso, A. 2006. The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sedimentary Geology 188–189:3567.Google Scholar
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. InSilver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America Special Paper 190:291296.Google Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for the ends of local taxon ranges. Mathematical Geology 21:411427.Google Scholar
Strömberg, C. A. E. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences 39:517544.Google Scholar
Tedford, R. H., Albright III, L. B., Barnosky, A. D., Ferrusquia-Villafranca, I., Hunt, R. M. Jr., Storer, J. E., Swisher, C. C. III, Voorhies, M. R., Webb, S. D., and Whistler, D. P. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (Late Oligocene through Early Pliocene epochs). Pp. 169231inWoodburne, M. O., ed. Columbia University Press, New York.Google Scholar
van Dam, J. A., Alcalá, L., Zarza, A. Alonso, Calvo, J. P., Garcés, M., and Krijgsman, W. 2001. The Upper Miocene mammal record from the Teruel-Alfambra region (Spain). The MN system and continental stage/age concepts discussed. Journal of Vertebrate Paleontology 21:367385.Google Scholar
van Dam, J. A., Aziz, H. A., Álvarez Sierra, M. A., Hilgen, F. J., van den Hoek Ostende, L. W., Lourens, L. J., Mein, P., van der Meulen, A. J., and Peláez-Campomanes, P. 2006. Long-period astronomical forcing of mammal turnover. Nature 443:687691.Google Scholar
van der Made, J., Morales, J., and Montoya, P. 2006. Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 238:228246.Google Scholar
van der Meulen, A. J., Peláez-Campomanes, P., and Levin, S. A. 2005. Age structure, residents, and transients of Miocene rodent communities. American Naturalist 165:108125.Google Scholar
Wust, G. 1961. On the vertical circulation of the Mediterranean Sea. Journal of Geophysical Research 66:32613271.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar