Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T18:18:55.746Z Has data issue: false hasContentIssue false

Dinosaur eggs: gas conductance through the shell, water loss during incubation and clutch size

Published online by Cambridge University Press:  08 February 2016

Roger S. Seymour*
Affiliation:
Department of Zoology, University of Adelaide, Adelaide 5001 South Australia

Abstract

The conductance of water vapor and respiratory gases by diffusion through the eggshells of Upper Cretaceous dinosaurs has been estimated from measurements of shell and pore geometry in fossil specimens. When compared to recent reptile and bird eggs for which nest environments are known, the highly porous eggshells of three dinosaur species indicate that the dinosaur nests were high in humidity and probably low in oxygen and high in carbon dioxide. Such conditions most likely occurred underground or within an incubation mound.

By isolating the eggs from the atmosphere, however, some large sauropods may have been forced to limit their clutch size to numbers small enough to prevent depletion of oxygen and elevation of carbon dioxide to intolerable levels in the nest. Fossil evidence supports this and suggests that one sauropod actually divided her large eggs into several clutches. Each small clutch probably had a metabolic rate similar to those of clutches produced by recent reptiles and mound nesting birds.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerman, R. A. 1975. Diffusion and the gas exchange of sea turtle eggs. Ph.D. Dissertation. University of Florida; Gainsville, Florida.Google Scholar
Ackerman, R. A. 1977. The respiratory gas exchange of sea turtle nests (Chelonia, Caretta). Respir. Physiol. 31:1938.CrossRefGoogle ScholarPubMed
Ackerman, R. A. and Prange, H. D. 1972. Oxygen diffusion across a sea turtle (Chelonia mydas) egg shell. Comp. Biochem. Physiol. 43A:905909.CrossRefGoogle Scholar
Andrews, R. C. 1926. On the Trail of Ancient Man. 375 pp. Putnam; New York and London.Google Scholar
Ar, A., Paganelli, C. V., Reeves, R. B., Greene, D. G., and Rahn, H. 1974. The avian egg: Water vapor conductance, shell thickness, and functional pore area. Condor. 76:153158.CrossRefGoogle Scholar
Baltin, S. 1969. Zur Biologie und Ethologie des Talegalla-Huhns (Alectura lathami Gray) unter besonderer Berücksichtigung des Verhaltens während der Brutperiode. Z. Tierpsychol. 26:524572.CrossRefGoogle Scholar
Bartholomew, G. A. 1977. Energy metabolism. Pp. 57110. In: Gordon, M. S., ed. Animal Physiology: Principles and Adaptations. MacMillan; New York.Google Scholar
Benedict, F. G. 1932. The Physiology of Large Reptiles with Special Reference to the Heat Production of Snakes, Tortoises, Lizards and Alligators. Publication No. 425. 539 pp. Carnegie Inst., Washington.Google Scholar
Board, R. G., Tullett, S. G., and Perrott, H. R. 1977. An arbitrary classification of the pore systems in avian eggshells. J. Zool. 182:251265.CrossRefGoogle Scholar
Brazaitis, P. 1973. The identification of living crocodilians. Zoologica (NY). 58:59101.Google Scholar
Brown, B. and Schlaikjer, E. M. 1940. The structure and relationships of Protoceratops. Ann. N.Y. Acad. Sci. 40:133266.CrossRefGoogle Scholar
Bustard, R. 1972. Sea Turtles/Natural History and Conservation. 220 pp. Taplinger Publishing Co.; New York.Google Scholar
Carr, A. 1952. Handbook of Turtles. 542 pp. Comstock; Ithaca, New York. Constable; London.Google Scholar
Chattock, A. P. 1925. On the physics of incubation. Philos. Trans. R. Soc. London, Ser. B 213:397450.Google Scholar
Clark, H. 1953. Metabolism of the black snake embryo. II Respiratory exchange. J. Exp. Biol. 30:502505.CrossRefGoogle Scholar
Colbert, E. H. 1962a. Dinosaurs, Their Discovery and their World. 288 pp. Hutchinson; London.Google Scholar
Colbert, E. H. 1962b. The weights of dinosaurs. Am. Mus. Novit. 2076:116.Google Scholar
Cott, H. B. 1961. Scientific results of an inquiry into the ecology and economic status of the Nile Crocodile (Crocodilus niloticus) in Uganda and Northern Rhodesia. Trans. Zool. Soc. London 29:211356.CrossRefGoogle Scholar
Desmond, A. J. 1975. The Hot-Blooded Dinosaurs. 238 pp. Blond and Briggs; London.Google Scholar
Ditmars, R. L. 1942. The Reptiles of North America. 476 pp. Doubleday, Duran and Co.; New York.Google Scholar
Dmi'el, R. 1970. Growth and metabolism in snake embryos. J. Embryol. Exp. Morph. 23:761772.Google ScholarPubMed
Drent, R. H. 1970. Functional aspects of incubation in the Herring Gull. Behaviour, Suppl. 17:1132.Google Scholar
Drent, R. H. 1975. Incubation. Pp. 334420. In: Farner, D. S. and King, J. R., eds. Avian Biology, Volume 5. Academic Press; New York.Google Scholar
Dughi, R. and Sirugue, F. 1957. Les oeufs de Dinosauriens du bassin d'Aix-En-Provence. C. R. Acad. Sci. 245:707710.Google Scholar
Dughi, R. and Sirugue, F. 1958. Observations sur les oeufs de Dinosaures du bassin d'Aix-en-Provence: les oeufs à coquilles bistratifiées. C. R. Acad. Sci. 246:22712274.Google Scholar
Dughi, R. and Sirugue, F. 1966. Sur la fossilisation des oeufs de Dinosaures. C. R. Acad. Sci. 262:23302332.Google Scholar
Erasmus, B. de W., Howell, B. J., and Rahn, H. 1970/71. Ontogeny of acid-base balance in the bullfrog and chicken. Respir. Physiol. 11:4653.CrossRefGoogle Scholar
Erben, H. K. 1969. Dinosaurier: Pathologische Strukturen der Eischale als Letalfaktor. Umsch. Wiss. Tech. 17:552553.Google Scholar
Erben, H. K. 1972. Ultrastrukturen und Dicke der Wand pathologischer Eischalen. Akad. Wiss. Lit., Mainz, Abh. Math. Naturwiss. Kl. 6:191216.Google Scholar
Fitch, H. S. and Fitch, A. V. 1967. Preliminary experiments on physical tolerances of the eggs of lizards and snakes. Ecology. 48:160165.CrossRefGoogle Scholar
Folinsbee, R. E., Fritz, P., Krouse, H. R., and Robblee, A. R. 1970. Carbon-13 and oxygen-18 in dinosaur, crocodile, and bird eggshells indicate environmental conditions. Science. 168:13531356.CrossRefGoogle ScholarPubMed
Gans, C. 1976. Questions in crocodilian physiology. Zool. Afr. 11:241248.Google Scholar
Guggisberg, C. A. W. 1972. Crocodiles. 195 pp. Wren; Mount Eliza, Victoria.Google Scholar
Halstead, L. B. 1976. The Evolution and Ecology of the Dinosaurs. 116 pp. Book Club Associates; London.Google Scholar
Handbook of Chemistry and Physics. 44th Ed. 1962. Chemical Rubber Publishing Co., Cleveland, Ohio.Google Scholar
Hoyt, D. F. 1976. The effect of shape on the surface-volume relationships of birds' eggs. Condor. 78:343349.CrossRefGoogle Scholar
Kolesnikov, Ch. M. and Sochava, A. V. 1972. A paleobiochemical study of Cretaceous dinosaur eggshell from the Gobi. Paleontol. J. 6:235245.Google Scholar
Kutchai, H. and Steen, J. B. 1971. Permeability of the shell and shell membranes of hens' eggs during development. Respir. Physiol. 11:265278.CrossRefGoogle ScholarPubMed
Lapparent, A.-F. de. 1957. Les oeufs de Dinosauriens fossiles de Rousset (Bouches-du-Rhône). C. R. Acad. Sci. 245:546549.Google Scholar
Legler, J. M. 1960. Natural history of the ornate box turtle, Terrapene ornata ornata Agassiz. Univ. Kans. Mus. Nat. Hist. Misc. Publ. 11:527669.Google Scholar
Lynn, W. G. and von Brand, T. 1945. Studies on the oxygen consumption and water metabolism of turtle embryos. Biol. Bull. (Woods Hole, Mass.) 88:112125.CrossRefGoogle Scholar
MacFarland, C. G. and Reeder, W. G. 1975. Breeding, raising and restocking of giant tortoises (Geochelone elephantopus) in the Galápagos Islands. Pp. 1337. In: Martin, R. D., ed. Breeding Endangered Species in Captivity. Academic Press; London, New York, San Francisco.Google Scholar
McIlhenny, E. A. 1934. Notes on incubation and growth of alligators. Copeia. 1934:8088.CrossRefGoogle Scholar
Moore, J. C. 1953. The crocodile in the Everglades National Park. Copeia. 1953:5459.CrossRefGoogle Scholar
Packard, G. C., Sutherland, P. R., and Packard, M. J. 1977a. Adaptive reduction in permeability of avian eggshells to water vapour at high altitudes. Nature (London). 266:255256.CrossRefGoogle ScholarPubMed
Packard, G. C., Tracy, C. R., and Roth, J. J. 1977b. The physiological ecology of reptilian eggs and embryos, and the evolution of viviparity within the class Reptilia. Biol. Rev. Cambridge Philos. Soc. 52:71105.CrossRefGoogle ScholarPubMed
Paganelli, C. V., Olszowka, A., and Ar, A. 1974. The avian egg: surface area, volume, and density. Condor. 76:319325.CrossRefGoogle Scholar
Paganelli, C. V., Ar, A., Rahn, H., and Wangensteen, O. D. 1975. Diffusion in the gas phase: The effects of ambient pressure and gas composition. Respir. Physiol. 25:247258.CrossRefGoogle ScholarPubMed
Prange, H. D. and Ackerman, R. A. 1974. Oxygen consumption and mechanisms of gas exchange of Green Turtle (Chelonia mydas) eggs and hatchlings. Copeia. 1974:758763.CrossRefGoogle Scholar
Rahn, H., Ackerman, R. A., and Paganelli, C. V. 1977. Humidity in the avian nest and egg water loss during incubation. Physiol. Zool 50:269283.CrossRefGoogle Scholar
Rahn, H. and Ar, A. 1974. The avian egg: Incubation time and water loss. Condor. 76:147152.CrossRefGoogle Scholar
Rahn, H., Paganelli, C. V., and Ar, A. 1974. The avian egg: Air-cell gas tension, metabolism and incubation time. Respir. Physiol. 22:297309.CrossRefGoogle ScholarPubMed
Rahn, H., Paganelli, C. V., Nisbet, I. C. T., and Whittow, G. C. 1976. Regulation of incubation water loss in eggs of seven species of terns. Physiol. Zool. 49:245259.CrossRefGoogle Scholar
Schmidt, W. J. 1967. Struktur des Eischalenkalkes von Dinosauriern. Z. Zellforsch. Mikrosk. Anat. 82:136155.CrossRefGoogle Scholar
Schwarz, L., Fehse, F., Müller, G., Andersson, F., and Sieck, F. 1961. Untersuchungen an Dinosaurier-Eischalen von Aix en Provence und der Mongolei (Shabarakh Usu). Z. Wiss. Zool. 165:344379.Google Scholar
Seymour, R. S. and Rahn, H. 1978. Gas conductance in the eggshell of the mound-building Brush Turkey. Pp. 242246. In: Piiper, J., ed. Respiratory Function in Birds, Adult and Embryonic. Springer-Verlag; Heidelberg.Google Scholar
Sochava, A. V. 1969. Dinosaur eggs from the upper cretaceous of the Gobi Desert. Paleontol. J. 3:517527.Google Scholar
Sochava, A. V. 1971. Two types of eggshell in Senonian Dinosaurs. Paleontol. J. 5:353361.Google Scholar
Throp, J. L. 1969. Notes on breeding the Galapagos tortoise Testudo elephantopus at Honolulu Zoo. Int. Zoo Yearb. 9:3031.CrossRefGoogle Scholar
Van Straelen, V. 1925. The microstructure of the dinosaurian egg-shells from the cretaceous beds of Mongolia. Am. Mus. Novit. 173:14.Google Scholar
Van Straelen, V. and Denaeyer, M.-E. 1923. Sur des oeufs fossiles du Crétacé supérieur de Rognac en Provence. Bull. Cl. Sci. Acad. R. Belg. 1923:1426.Google Scholar
Wangensteen, O. D., Wilson, D., and Rahn, H. 1970/71. Diffusion of gases across the shell of the hen's eggs. Respir. Physiol. 11:1630.CrossRefGoogle Scholar
Wangensteen, O. D., Rahn, H., Burton, R. R., and Smith, A. H. 1974. Respiratory gas exchange of high altitude adapted chick embryos. Respir. Physiol. 21:6170.CrossRefGoogle ScholarPubMed
Webb, G. J. W., Messel, H., and Magnusson, W. 1977. The nesting of Crocodylus porosus in Arnhem Land, Northern Australia. Copeia. 1977:238249.CrossRefGoogle Scholar
Wood, S. C. and Lenfant, C. J. M. 1976. Respiration: Mechanics, control and gas exchange. Pp. 225274. In: Gans, C., ed. Biology of the Reptilia. Volume 5. Academic Press; New York, London, San Francisco.Google Scholar
Yadav, R. N. 1969. Breeding the mugger crocodile Crocodylus palustris at Jaipur Zoo. Int. Zoo Yearb. 9:33.CrossRefGoogle Scholar
Zarrow, M. X. and Pomerat, C. M. 1937. Respiration of the egg and young of the smooth green snake, Liopeltis vernalis (Harlan). Growth. 1:103110.Google Scholar